Что такое обратная функция. Обратная функция

Пусть множества $X$ и $Y$ включены в множество действительных чисел. Введем понятие обратимой функции .

Определение 1

Функция $f:X\to Y$ отображающая множество $X$ в множество $Y$ называется обратимой, если для любых элементов $x_1,x_2\in X$ из того что $x_1\ne x_2$ следует, что $f(x_1)\ne f(x_2)$.

Теперь мы можем ввести понятие обратной функции.

Определение 2

Пусть функция $f:X\to Y$ отображающая множество $X$ в множество $Y$ обратима. Тогда функция $f^{-1}:Y\to X$ отображающая множество $Y$ в множество $X$ определяемая условием $f^{-1}\left(y\right)=x$ называется обратной для $f(x)$.

Сформулируем теорему:

Теорема 1

Пусть функция $y=f(x)$ определена, монотонно возрастает (убывает) и непрерывна в некотором промежутке $X$. Тогда в соответствующем промежутке $Y$ значений этой функции у нее существует обратная функция, которая также монотонно возрастает (убывает) и непрерывна на промежутке $Y$.

Введем теперь, непосредственно, понятие взаимно обратных функций.

Определение 3

В рамках определения 2, функции $f(x)$ и $f^{-1}\left(y\right)$ называются взаимно обратными функциями.

Свойства взаимно обратных функций

Пусть функции $y=f(x)$ и $x=g(y)$ взаимно обратные, тогда

    $y=f(g\left(y\right))$ и $x=g(f(x))$

    Область определения функции $y=f(x)$ равна области значения функции$\ x=g(y)$. А область определения функции $x=g(y)$ равна области значения функции$\ y=f(x)$.

    Графики функций $y=f(x)$ и $x=g(y)$ симметричны относительно прямой $y=x$.

    Если одна из функций возрастает (убывает), то и другая функция возрастает (убывает).

Нахождение обратной функции

    Решается уравнение $y=f(x)$ относительно переменной $x$.

    Из полученных корней находят те, которые принадлежат промежутку $X$.

    Найденные $x$ ставят в соответствия числу $y$.

Пример 1

Найти обратную функцию, для функции $y=x^2$ на промежутке $X=[-1,0]$

Так как эта функция убывает и непрерывна на промежутке $X$, то на промежутке $Y=$, которая также убывает и непрерывна на этом промежутке (теорема 1).

Вычислим $x$:

\ \

Выбираем подходящие $x$:

Ответ: обратная функция $y=-\sqrt{x}$.

Задачи на нахождение обратных функций

В этой части рассмотрим обратные функции для некоторых элементарных функций. Задачи будем решать по схеме, данной выше.

Пример 2

Найти обратную функцию для функции $y=x+4$

    Найдем $x$ из уравнения $y=x+4$:

Пример 3

Найти обратную функцию для функции $y=x^3$

Решение.

Так как функция возрастает и непрерывна на всей области определения, то, по теореме 1, она имеет на ней обратную непрерывную и возрастающую функцию.

    Найдем $x$ из уравнения $y=x^3$:

    Находим подходящие значения $x$

    Значение в нашем случае подходит (так как область определения -- все числа)

    Переопределим переменные, получим, что обратная функция имеет вид

Пример 4

Найти обратную функцию для функции $y=cosx$ на промежутке $$

Решение.

Рассмотрим на множестве $X=\left$ функцию $y=cosx$. Она непрерывна и убывает на множестве $X$ и отображает множество $X=\left$ на множество $Y=[-1,1]$, поэтому по теореме о существовании обратной непрерывной монотонной функции у функции $y=cosx$ в множестве $Y$ существует обратная функция, которая также непрерывна и возрастает в множестве $Y=[-1,1]$ и отображает множество $[-1,1]$ на множество $\left$.

    Найдем $x$ из уравнения $y=cosx$:

    Находим подходящие значения $x$

    Переопределим переменные, получим, что обратная функция имеет вид

Пример 5

Найти обратную функцию для функции $y=tgx$ на промежутке $\left(-\frac{\pi }{2},\frac{\pi }{2}\right)$.

Решение.

Рассмотрим на множестве $X=\left(-\frac{\pi }{2},\frac{\pi }{2}\right)$ функцию $y=tgx$. Она непрерывна и возрастает на множестве $X$ и отображает множество $X=\left(-\frac{\pi }{2},\frac{\pi }{2}\right)$ на множество $Y=R$, поэтому по теореме о существовании обратной непрерывной монотонной функции у функции $y=tgx$ в множестве $Y$ существует обратная функция, которая также непрерывна и возрастает в множестве $Y=R$ и отображает множество $R$ на множество $\left(-\frac{\pi }{2},\frac{\pi }{2}\right)$

    Найдем $x$ из уравнения $y=tgx$:

    Находим подходящие значения $x$

    Переопределим переменные, получим, что обратная функция имеет вид

    Допустим, что у нас есть некая функция y = f (x) , которая является строго монотонной (убывающей или возрастающей) и непрерывной на области определения x ∈ a ; b ; область ее значений y ∈ c ; d , а на интервале c ; d при этом у нас будет определена функция x = g (y) с областью значений a ; b . Вторая функция также будет непрерывной и строго монотонной. По отношению к y = f (x) она будет обратной функцией. То есть мы можем говорить об обратной функции x = g (y) тогда, когда y = f (x) на заданном интервале будет либо убывать, либо возрастать.

    Две этих функции, f и g , будут взаимно обратными.

    Для чего вообще нам нужно понятие обратных функций?

    Это нужно нам для решения уравнений y = f (x) , которые записываются как раз с помощью этих выражений.

    Допустим, нам нужно найти решение уравнения cos (x) = 1 3 . Его решениями будут все точки: x = ± a rс c o s 1 3 + 2 π · k , k ∈ Z

    Обратными по отношению друг к другу будут, например, функции арккосинуса и косинуса.

    Разберем несколько задач на нахождение функций, обратных заданным.

    Пример 1

    Условие: какая функция будет обратной для y = 3 x + 2 ?

    Решение

    Область определений и область значений функции, заданной в условии, – это множество всех действительных чисел. Попробуем решить данное уравнение через x , то есть выразив x через y .

    Мы получим x = 1 3 y - 2 3 . Это и есть нужная нам обратная функция, но y здесь будет аргументом, а x - функцией. Переставим их, чтобы получить более привычную форму записи:

    Ответ: функция y = 1 3 x - 2 3 будет обратной для y = 3 x + 2 .

    Обе взаимно обратные функции можно отобразить на графике следующим образом:

    Мы видим симметричность обоих графиков относительно y = x . Эта прямая является биссектрисой первого и третьего квадрантов. Получилось доказательство одного из свойств взаимно обратных функций, о котором мы поговорим далее.

    Возьмем пример, в котором нужно найти логарифмическую функцию, обратную заданной показательной.

    Пример 2

    Условие: определите, какая функция будет обратной для y = 2 x .

    Решение

    Для заданной функции областью определения являются все действительные числа. Область значений лежит в интервале 0 ; + ∞ . Теперь нам нужно выразить x через y , то есть решить указанное уравнение через x . Мы получаем x = log 2 y . Переставим переменные и получим y = log 2 x .

    В итоге у нас вышли показательная и логарифмическая функции, которые будут взаимно обратными друг другу на всей области определения.

    Ответ: y = log 2 x .

    На графике обе функции будут выглядеть так:

    Основные свойства взаимно обратных функций

    В этом пункте мы перечислим основные свойства функций y = f (x) и x = g (y) , являющихся взаимно обратными.

    Определение 1

    1. Первое свойство мы уже вывели ранее: y = f (g (y)) и x = g (f (x)) .
    2. Второе свойство вытекает из первого: область определения y = f (x) будет совпадать с областью значений обратной функции x = g (y) , и наоборот.
    3. Графики функций, являющихся обратными, будут симметричными относительно y = x .
    4. Если y = f (x) является возрастающей, то и x = g (y) будет возрастать, а если y = f (x) убывает, то убывает и x = g (y) .

    Советуем внимательно отнестись к понятиям области определения и области значения функций и никогда их не путать. Допустим, что у нас есть две взаимно обратные функции y = f (x) = a x и x = g (y) = log a y . Согласно первому свойству, y = f (g (y)) = a log a y . Данное равенство будет верным только в случае положительных значений y , а для отрицательных логарифм не определен, поэтому не спешите записывать, что a log a y = y . Обязательно проверьте и добавьте, что это верно только при положительном y .

    А вот равенство x = f (g (x)) = log a a x = x будет верным при любых действительных значениях x .

    Не забывайте про этот момент, особенно если приходится работать с тригонометрическими и обратными тригонометрическими функциями. Так, a r c sin sin 7 π 3 ≠ 7 π 3 , потому что область значений арксинуса - π 2 ; π 2 и 7 π 3 в нее не входит. Верной будет запись

    a r c sin sin 7 π 3 = a r c sin sin 2 π + π 3 = = п о ф о р м у л е п р и в и д е н и я = a r c sin sin π 3 = π 3

    А вот sin a r c sin 1 3 = 1 3 – верное равенство, т.е. sin (a r c sin x) = x при x ∈ - 1 ; 1 и a r c sin (sin x) = x при x ∈ - π 2 ; π 2 . Всегда будьте внимательны с областью значений и областью определений обратных функций!

    • Основные взаимно обратные функции: степенные

    Если у нас есть степенная функция y = x a , то при x > 0 степенная функция x = y 1 a также будет обратной ей. Заменим буквы и получим соответственно y = x a и x = y 1 a .

    На графике они будут выглядеть следующим образом (случаи с положительным и отрицательным коэффициентом a):

    • Основные взаимно обратные функции: показательные и логарифмические

    Возьмем a,которое будет положительным числом, не равным 1 .

    Графики для функций с a > 1 и a < 1 будут выглядеть так:

    • Основные взаимно обратные функции: тригонометрические и обратные тригонометрические

    Если нам нужно построить график главной ветви синуса и арксинуса, он будет выглядеть следующим образом (показан выделенной светлой областью).

    Функция - это зависимость одной переменной от другой. Функции можно задавать способом таблицы, словесным способом, графический, формулой.

    Функции подразделяются на следующие виды:

    • Линейная функция
    • Квадратичная функция
    • Кубическая функция
    • Тригонометрическая функция
    • Степенная функция
    • Показательная функция
    • Логарифмическая функция

    Область определения функции D(у) - это множество всех допустимых значений аргумента x (независимой переменной x), при которых выражение, стоящее в правой части уравнения функции y = f(x) имеет смысл. Другими словами, это область допустимых значений выражения f(x).

    Чтобы по графику функции y = f(x) найти ее область определения, нужно, двигаясь слева направо вдоль оси ОХ, записать все промежутки значений х, на которых существует график функции.

    Множество значений фнкции Е(у) - это множество всех значений, которые может принимать зависимая переменная y.

    Чтобы по графику функции y = f(x) найти ее множество значений, нужно, двигаясь снизу вверх вдоль оси OY, записать все промежутки значений y, на которых существует график функции.

    Обратная функция - функция y=g(x), которая получается из данной функции y = f(x), если из отношения x = f(у) выразить y через x.

    Чтобы для данной функции y = f(x) найти обратную, надо:

    1. В соотношении y = f(x) заменить x на y, а y - на x: x = f(у) .
    2. В полученном выражении x=f(у) выразить y через x.

    Функции f(x) и g(x) - взаимно обратны. Рассмотрим это на примере

    Примеры нахождения обратных функций:

    Область определения и область значений функций f и g меняются местами: область определения f является областью значений g, а область значений f - областью определения g.

    Не для всякой функции можно указать обратную. Условие обратимости функции - ее монотонность, то есть функция должна только возрастать или только убывать. Если функция не монотонна на всей области определения, но монотонная на некотором промежутке, тогда можно задать обратную ей функцию только на этом промежутке.

    Свойства взаимно обратных функций Отметим некоторые свойства взаимно обратных функций. 1) Тождества .

    Пусть f и g – взаимно обратные функции. Тогда: f(g(y)) = у и g(f(x)) = х . 2) Область определения .

    Пусть f и g – взаимно обратные функции. Область определения функции f совпадает с областью значений функции g , и наоборот, область значений функции f совпадает с областью определения функции g . 3) Монотонность .

    Если одна из взаимно обратных функций возрастает, то и другая возрастает. Аналогичное утверждение верно и для убывающих функций. 4) Графики .

    Графики взаимно обратных функций, построенные в одной и той же системе координат, симметричны друг другу относительно прямой у = х .

    Преобразования графиков функций - это линейные преобразования функции y = f (x ) или её аргумента x к виду y = af (kx + b ) + m , а также преобразование с использованием модуля.

    Зная, как строить графики функции y = f(x) , где

    можно построить график функции y = af(kx + b) + m.

    Вопросы к конспектам

    Y = 0,5x - 4

    Найдите область определения функции:

    Найдите область определения функции:

    Определить четность и нечетность функции:

    Решите дробно-рациональное уравнение:

    Найдите обратную функцию данной функции:

    Найдите значение выражения 6f(-1) +3f(5), если

    Что такое обратная функция? Как найти функцию, обратную данной?

    Определение .

    Пусть функция y=f(x) определена на множестве D, а E — множество её значений. Обратная функция по отношению к функции y=f(x) — это функция x=g(y), которая определена на множестве E и каждому y∈E ставит в соответствие такое значение x∈D, что f(x)=y.

    Таким образом, область определения функции y=f(x) является областью значений обратной к ней функции, а область значений y=f(x) — областью определения обратной функции.

    Чтобы найти функцию, обратную данной функции y=f(x), надо :

    1) В формулу функции вместо y подставить x, вместо x — y:

    2) Из полученного равенства выразить y через x:

    Найти функцию, обратную функции y=2x-6.

    Функции y=2x-6 и y=0,5x+3 являются взаимно обратными.

    Графики прямой и обратной функций симметричны относительно прямой y=x (биссектрисы I и III координатных четвертей).

    y=2x-6 и y=0,5x+3 — . Графиком линейной функции является . Для построения прямой берём две точки.

    Однозначно выразить y через x можно в том случае, когда уравнение x=f(y) имеет единственное решение. Это можно сделать в том случае, если каждое своё значение функция y=f(x) принимает в единственной точке её области определения (такая функция называется обратимой ).

    Теорема (необходимое и достаточное условие обратимости функции)

    Если функция y=f(x) определена и непрерывна на числовом промежутке, то для обратимости функции необходимо и достаточно, чтобы f(x) была строго монотонна.

    Причем, если y=f(x) возрастает на промежутке, то и обратная к ней функция также возрастает на этом промежутке; если y=f(x) убывает, то и обратная функция убывает.

    Если условие обратимости не выполнено на всей области определения, можно выделить промежуток, где функция только возрастает либо только убывает, и на этом промежутке найти функцию, обратную данной.

    Классический пример — . На промежутке }

Публикации по теме