Общенаучные методы исследования. Общенаучные методы (анализ и синтез, аналогия и моделирование) Анализ синтез моделирование

Анализ есть разложение на части, рассмотрение всех сторон и способов функционирования, синтез - рассмотрение способа связей и отношений частей. порождают в каждой области специальные методы.

Абстрагирование и идеализация. Общенаучный прием. Это временное мысленное вычленение из множества свойств и аспектов явления интересующих нас отвлечение от других свойств и построение идеального объекта типа точки или прямой. Сложный вопрос, дает ли этот метод и каким способом верное представление о действительности? Как он вообще может работать? Здесь же возникает общее понятие о классе предметов.

В ходе идеализации кроме абстрагирование еще прием введения новых свойств в объект.

Индукция, дедукция, аналогия. Индукция характерна для опытных наук, дает возможность построения гипотез, не дает достоверного знания, наводит на мысль. При этом существуют и отдельные строгие формы индукции как математическая. Дедукция выводит их общих теорем специальные выводы. Дает достоверное знание, если верна посылка. Аналогия - выдвижение гипотез о свойстве объекта на основании его сходства с уже изученным. Требует дальнейшего обоснования.

Моделирование.

Один объект заменяется другим со схожими свойствами, но не полностью схожими. Позволяет получать выводы об оригинале на основании изучения модели. При этом возможно предметное, физическое, математическое, знаковое, компьютерное моделирование в зависимости от вида модели. Наблюдение эксперимент, измерение в ходе их. Во всех формах организации научного знания осуществляется обобщенное описание действительности, на основе которого более глубоко раскрывается сущность явления и тем самым осуществляется поэтапная редукция в направление от наименее обобщенных ко все более обобщенным формам описания действительности. Несмотря на то, что в научном познании происходит постоянное движение ко все большей обобщенности, вместе с тем мы имеем огромное многообразие различных областей наук и ни в одной области науки это движение не привело к исчезновению и устранению многообразия научных теорий и их редукции к единой теоретической схеме. Сегодня наука представляет собой колоссальное многообразие различных методов познания и значительного количества методологических исследовательских программ. например, различные подходы применяются к исследованию одного и того же явления, в одних случаях рассматриваются одни аспекты, в других - другие. При этом может быть, что рассматриваются одни аспекты, но характеризуются разными величинами или используются разные методы. Таким образом, дифференциация науки происходит на основе возникновения новых теорий, что связано с более глубоким проникновением в сущность исследуемого объекта. То, что ранее было одной наукой, с течением времени распочковывается на теории, которые развиваются до отдельной науки. Пример математики и физики, где одни специалисты уже вообще не ориентируются в области, где работают другие. Кроме разделения в результате конкретизации классических наук, есть и разделение в методе изучения, в аспекте изучения.

Кроме того, по мере развития возникают новые явления, в первую очередь в общественной жизни, что приводит к появлению еще большего числа наук, истоки которых уже не приходится искать в прошлом. Примером может служить различная теория систем. Далее, новые науки возникают на стыке традиционных, например, биофизика, биохимия, структурный анализ, математическая лингвистика. Взаимопроникновение наук приводит к их дифференциации, при этом реализуется новый взгляд на явление или предмет изучения, что позволяет более эффективно использовать данные науки.

Интеграция в науке связана прежде всего с унификацией разнообразных методов научного исследования. Разработка методологии науки привела к единому научному стандарту, конечно, эти методы есть уровень абстракции и в каждой конкретной области они имеют собственную объект и фикацию. Кроме того, есть общенаучные методы типа применения математических методов исследования объектов во всех науках без исключения. Интеграция идет и в плане объединения теория и видения их внутренней взаимосвязи на основе открытия основополагающих принципов бытия. это не означает отмены этих наук, а это лишь более глубокий уровень проникновения в сущность исследуемых явлений - создание общих теорий, метатеорий и общих методов доказательства. Происходит объединение наук на принципе нового уровня абстракции, примером чему может опять служить теория систем.

Общая характеристика функций философии: говоря обыденным языком, функции философии - это те обязанности, которые предписаны философии самим предметом философского познания. Иначе, функции философии - это обязанности философии перед человеком, если он в познании полагается на философию: как своеобразный алгоритм познания философия должна обеспечить определенный результат познавательной деятельности, к примеру, дать достоверные представления о мире и месте в нем человека.

Более строго, мы можем определить понятие "функция" следующим образом: это способ действия, способ проявления активности системы философского знания. В этом смысле, Гете (1749-1832) определял понятие "функция" как "существование, мыслимое нами в действии".

Функции философии подразделяются на две группы: мировоззренческие и методологические. Такое деление вытекает из самого определения философии как мировоззрения. Мировоззренческие функции философии:

  • 1. Гуманистическая функция: заключается в преодолении факторов, способствующих духовной деградации личности, которая, в свою очередь, является предпосылкой антропологической катастрофы. В ряду таких факторов отмечаются, в настоящее время, такие как рост специализации во всех отраслях человеческой деятельности, усиление технизации общества, рост анонимного научного знания, что в совокупности складывается в такие черты мировоззрения современного человека как техницизм и сциентизм. Отмеченные черты выражают внутри культурную тенденцию к абсолютизации роли техники и науки в контексте социальной жизни. Отстаивание гуманистического, духовного, собственно человеческого начала как в социальной жизни, в системе культуры, так и в самом человеке, и представляет собственное содержание гуманистической функции философии (А.Швейцер);
  • 2. Социально-аксиологическая функция: представляет систему подфункций, таких как: конструктивно-ценностная - предполагает разработку представлений о ценностях, управляющих как жизнью индивидуума, так и жизнью всего общества (социальный идеал); интерпретаторская - предполагает истолкование социальной действительности; критическая - представляет критику реальных социальных структур, общественных институтов, состояний общества, социальных действий;
  • 3. Культурно-воспитательная функция: предполагает не только воспитание человека в качестве субъекта культурного пространства и, как следствие, таких его качеств как самокритичность, критичность, но и формирование диалектического мышления;
  • 4. Отражательно-информационная функция: выражает основное назначение специализированного теоретического знания - адекватно отражать свой объект, выявлять его содержательные элементы, структурные связи, закономерности функционирования, способствовать углублению знаний, служить источником достоверной информации о мире, которая аккумулируется в философских понятиях, категориях, общих принципах, законах, образующих целостную систему.

Методологические функции философии выражают назначение философии как общеметодологического основания науки:

1. Эвристическая функция: предполагает содействие росту научного знания, создание предпосылок для научных открытий в контексте взаимодействия философского и формально-логического методов, что приводит к интенсивному и экстенсивному изменению философских категорий и, как следствие, к рождению нового знания, имеющего вид прогноза (гипотезы). Необходимо, в этом смысле, отметить, что нет ни одной естественнонаучной теории, создание которой обошлось бы без использования общефилософских представлений о причинности, пространстве, времени и т.п. Доказано, что теории в естественных науках создаются на двойственном базисе - на единстве эмпирического и внеэмпирического. Роль внеэмпирического основания играет философия.

Другими словами, философские представления играют конструирующую роль. Общие философские понятия и принципы проникают в естествознание через такие философские отрасли как онтология, гносеология, а также через регулятивные принципы самих частных наук (к примеру, в физике, это принципы наблюдаемости, простоты, соответствия). Таким образом, гносеологические принципы философии играют важную роль не только в становлении теории, но и выполняют роль регулятивов, определяющих процесс ее дальнейшего функционирования. Интересно, что философия влияет на научные теории не как единое целое, а лишь локально - отдельными идеями, понятиями, принципами. Причем, в актах взаимоопределения философии и науки, положение естествоиспытателя гораздо сложнее, чем положение философа. Ученый, на стадии формирования теории, должен принимать точки зрения, не совместимые в одной системе. Философ, напротив, открыв системосозидающий принцип, далее может пользоваться им, интерпретируя данные естественных наук в интересах собственной системы (А.Эйнштейн).

Таким образом, эвристическая функция философии, предполагающая применение диалектики как общенаучного метода (диалектики как логики) исследований, оказывает значительное влияние на состояние естественнонаучной картины мира;

2. Координирующая функция: предполагает координацию методов исследования в процессе научного поиска. До XX века, в науке отмечалось преобладание аналитического метода. Что привело к необходимости строго соблюдать соотношение: один предмет - один метод. Однако, в XX веке данное соотношение было нарушено. В исследованиях одного предмета используются уже несколько методов и, напротив, в исследовании нескольких предметов - один метод.

Потребность в координации методов исследований вызвана не только усложнением традиционной для аналитического метода картины "метод-предмет", но и возникновением ряда негативных факторов, связанных в частности с растущей специализацией ученых. Необходимо в этой связи отметить, что специализация коснулась и философского знания. Можно считать, что время философских систем прошло. То есть философия как система, построенная от начала и до конца одним философом, есть не возобновляемый факт.

У современных философов с трудом хватает времени, физических сил и философской техники на разработку одной какой-либо проблемы, имеющей отношении к локальной области философских исследований. В контексте координации методов научных исследований становится актуальной задача определения принципа соответствия применяемых методов друг другу и общей цели исследования. Дело в том, что у каждого метода есть свои фиксированные теоретико-познавательные и логические возможности, создание же комплекса методов позволяет расширить возможности конкретных методов. При этом, учитывая то, что все методы имеют различную эффективность, устанавливается их иерархия в контексте научного исследования.

В завершение, необходимо отметить, что философский метод как способ успешного решения научных задач не должен применяться в отрыве от собственной методологии науки, в отрыве от общенаучных и специальных методов;

3. Интегрирующая функция: предполагает осуществление объединяющей роли философского знания, определение и устранение дезинтегрирующих факторов, выявление недостающих звеньев научного знания. Процесс формирования отдельных научных дисциплин происходил путем ограничения предмета конкретной науки от предметов других наук. Однако, это привело к разрушению античной научной парадигмы, основным измерением которой было единство научного знания.

Изоляционизм как основание кризиса единства науки сохранялся вплоть до XIX века. Данная проблема могла быть решена только при посредстве философских принципов - собственно научных принципов организации знания здесь было не достаточно. Интеграция наук была осуществлена при помощи философского принципа единства мира, в соответствии с которым целостность природы обусловливает целостность знаний о природе. Применение философского принципа единства мира с целью интеграции естественнонаучного знания привело к образованию трех типов наук-интеграторов, осуществляющих "интеграцию по методу": это "переходные" науки, обладающие свойствами сразу нескольких научных дисциплин и связывающие только смежные научные дисциплины; "синтезирующие" науки, объединяющие ряд содержательно далеких наук и "проблемные" науки, возникающие для решения конкретной проблемы и представляющие синтез целого ряда наук. Необходимо отметить, что к "интеграции по методу" относятся математический и философский методы, применение которых в контексте научных исследований дает явления, определяемые понятиями "математизация науки" и "философизация науки".

Интегрирующие факторы (частные; общие; наиболее общие), объединяющие научное познание, наиболее общим из которых является философия, можно выстроить в следующий ряд: закон-метод-принцип-теория-идея-метатеория-конкретная наука-метанаука-смежная наука комплексная наука научная картина мира философия. В данном ряду, каждый последующий фактор является интегрирующим для каждого предыдущего; 4. Логико-гносеологическая функция: предполагает разработку самого философского метода, его нормативных принципов; а также, логико-гносеологическое обоснование понятийных и теоретических структур научного познания, к примеру, общенаучных методов: так, философия применяется для развития системного подхода.

Рассматриваются основные понятия моделирования систем, системные типы и свойства моделей, жизненный цикл моделирования (моделируемой системы).

Цель лекции: введение в понятийные основы моделирования систем.

Модель и моделирование - универсальные понятия, атрибуты одного из наиболее мощных методов познания в любой профессиональной области, познания системы, процесса, явления.

Модели и моделирование объединяют специалистов различных областей, работающих над решением межпредметных проблем, независимо от того, где эта модель и результаты моделирования будут применены. Вид модели и методы его исследования больше зависят от информационно-логических связей элементов и подсистем моделируемой системы, ресурсов, связей с окружением, используемых при моделировании , а не от конкретной природы, конкретного наполнения системы.

У моделей , особенно математических, есть и дидактические аспекты - развитие модельного стиля мышления, позволяющего вникать в структуру и внутреннюю логику моделируемой системы.

Построение модели - системная задача, требующая анализа и синтеза исходных данных, гипотез, теорий, знаний специалистов. Системный подход позволяет не только построить модель реальной системы, но и использовать эту модель для оценки (например, эффективности управления, функционирования) системы.

Модель - объект или описание объекта, системы для замещения (при определенных условиях предложениях, гипотезах) одной системы (т.е. оригинала) другой системой для лучшего изучения оригинала или воспроизведения каких-либо его свойств. Модель - результат отображения одной структуры (изученной) на другую (малоизученную). Отображая физическую систему (объект) на математическую систему (например, математический аппарат уравнений), получим физико-математическую модель системы или математическую модель физической системы. Любая модель строится и исследуется при определенных допущениях, гипотезах.

Пример. Рассмотрим физическую систему: тело массой m скатывающееся по наклонной плоскости с ускорением a, на которое воздействует сила F. Исследуя такие системы, Ньютон получил математическое соотношение: F=ma. Это физико-математическая модель системы или математическая модель физической системы. При описании этой системы (построении этой модели ) приняты следующие гипотезы: 1) поверхность идеальна (т.е. коэффициент трения равен нулю); 2) тело находится в вакууме (т.е. сопротивление воздуха равно нулю); 3) масса тела неизменна; 4) тело движется с одинаковым постоянным ускорением в любой точке.

Пример. Физиологическая система - система кровообращения человека - подчиняется некоторым законам термодинамики. Описывая эту систему на физическом (термодинамическом) языке балансовых законов, получим физическую, термодинамическую модель физиологической системы. Если записать эти законы на математическом языке, например, выписать соответствующие термодинамические уравнения, то уже получим математическую модель системы кровообращения. Назовем ее физиолого-физико-математической моделью или физико-математической моделью .

Пример. Совокупность предприятий функционирует на рынке, обмениваясь товарами, сырьем, услугами, информацией. Если описать экономические законы, правила их взаимодействия на рынке с помощью математических соотношений, например, системы алгебраических уравнений, где неизвестными будут величины прибыли, получаемые от взаимодействия предприятий, а коэффициентами уравнения будут значения интенсивностей таких взаимодействий, то получим математическую модель экономической системы, т.е. экономико-математическую модель системы предприятий на рынке.

Пример. Если банк выработал стратегию кредитования, смог описать ее с помощью экономико-математических моделей и прогнозирует свою тактику кредитования, то он имеет большую устойчивость и жизнеспособность.

Слово "модель " (лат. modelium) означает "мера", "способ", "сходство с какой-то вещью".

Моделирование базируется на математической теории подобия, согласно которой абсолютное подобие может иметь место лишь при замене одного объекта другим точно таким же. При моделировании большинства систем (за исключением, возможно, моделирования одних математических структур другими) абсолютное подобие невозможно, и основная цель моделирования - модель достаточно хорошо должна отображать функционирование моделируемой системы.

Модели , если отвлечься от областей, сфер их применения, бывают трех типов: познавательные , прагматические и инструментальные .

Познавательная модель - форма организации и представления знаний, средство соединения новых и старых знаний. Познавательная модель , как правило, подгоняется под реальность и является теоретической моделью .

Прагматическая модель - средство организации практических действий, рабочего представления целей системы для ее управления. Реальность в них подгоняется под некоторую прагматическую модель . Это, как правило, прикладные модели .

Инструментальная модель - средство построения, исследования и/или использования прагматических и/или познавательных моделей .

Познавательные отражают существующие, а прагматические - хоть и не существующие, но желаемые и, возможно, исполнимые отношения и связи.

По уровню, "глубине" моделирования модели бывают:

  • · эмпирические - на основе эмпирических фактов, зависимостей;
  • · теоретические - на основе математических описаний;
  • · смешанные, полуэмпирические - на основе эмпирических зависимостей и математических описаний.

Проблема моделирования состоит из трех задач:

  • · построение модели (эта задача менее формализуема и конструктивна, в том смысле, что нет алгоритма для построения моделей );
  • · исследование модели (эта задача более формализуема, имеются методы исследования различных классов моделей );
  • · использование модели (конструктивная и конкретизируемая задача).

Модель М, описывающая систему S(x 1 , x 2 , ..., x n ; R), имеет вид: М=(z 1 , z 2 , ..., z m ; Q), где z i Z, i=1, 2, ..., n, Q, R - множества отношений над X - множеством входных, выходных сигналов и состояний системы, Z - множество описаний, представлений элементов и подмножеств X.

Схема построения модели М системы S с входными сигналами X и выходными сигналами Y изображена на рис. 10.1.

Рис. 10.1.

Если на вход М поступают сигналы из X и на входе появляются сигналы Y, то задан закон, правило f функционирования модели , системы.

Моделирование - это универсальный метод получения, описания и использования знаний. Он используется в любой профессиональной деятельности. В современной науке и технологии роль и значение моделирования усиливается, актуализируется проблемами, успехами других наук. Моделирование реальных и нелинейных систем живой и неживой природы позволяет перекидывать мостики между нашими знаниями и реальными системами, процессами, в том числе и мыслительными.

Классификацию моделей проводят по различным критериям. Мы будем использовать наиболее простую и практически значимую.

Модель называется статической , если среди параметров, участвующих в ее описании, нет временного параметра. Статическая модель в каждый момент времени дает лишь "фотографию" системы, ее срез.

Пример. Закон Ньютона F=am - это статическая модель движущейся с ускорением a материальной точки массой m. Эта модель не учитывает изменение ускорения от одной точки к другой.

Модель динамическая , если среди ее параметров есть временной параметр, т.е. она отображает систему (процессы в системе) во времени.

Пример. Модель S=gt 2 /2 - динамическая модель пути при свободном падении тела. Динамическая модель типа закона Ньютона: F(t)=a(t)m(t). Еще лучшей формой динамической модели Ньютона является F(t)=s?(t)m(t).

Модель дискретная , если она описывает поведение системы только в дискретные моменты времени.

Пример. Если рассматривать только t=0, 1, 2, :, 10 (сек), то модель S t =gt 2 /2 или числовая последовательность S 0 =0, S 1 =g/2, S 2 =2g, S 3 =9g/2, :, S 10 =50g может служить дискретной моделью движения свободно падающего тела.

Модель непрерывная , если она описывает поведение системы для всех моментов времени из некоторого промежутка времени.

Пример. Модель S=gt 2 /2, 0

Модель имитационная , если она предназначена для испытания или изучения возможных путей развития и поведения объекта путем варьирования некоторых или всех параметров модели .

Пример. Пусть модель экономической системы производства товаров двух видов 1 и 2, соответственно, в количестве x 1 и x 2 единиц и стоимостью каждой единицы товара a 1 и a 2 на предприятии описана в виде соотношения: a 1 x 1 +a 2 x 2 =S, где S - общая стоимость произведенной предприятием всей продукции (вида 1 и 2). Можно ее использовать в качестве имитационной модели , по которой можно определять (варьировать) общую стоимость S в зависимости от тех или иных значений объемов производимых товаров.

Модель детерминированная , если каждому входному набору параметров соответствует вполне определенный и однозначно определяемый набор выходных параметров; в противном случае - модель недетерминированная, стохастическая (вероятностная).

Пример. Приведенные выше физические модели - детерминированные. Если в модели S=gt 2 /2, 0стохастическую модель (уже не свободного!) падения.

Модель функциональная , если она представима в виде системы каких- либо функциональных соотношений.

Пример. Непрерывный, детерминированный закон Ньютона и модель производства товаров (см. выше) - функциональные.

Модель теоретико-множественная , если она представима с помощью некоторых множеств и отношений принадлежности им и между ними.

Пример. Пусть заданы множество X={Николай, Петр, Николаев, Петров, Елена, Екатерина, Михаил, Татьяна} и отношения: Николай - супруг Елены, Екатерина - супруга Петра, Татьяна - дочь Николая и Елены, Михаил - сын Петра и Екатерины, семьи Михаила и Петра дружат друг с другом. Тогда множество X и множество перечисленных отношений Y могут служить теоретико-множественной моделью двух дружественных семей.

Модель логическая , если она представима предикатами, логическими функциями.

Пример. Совокупность двух логических функций вида: z=xyxy, p=xy может служить математической моделью одноразрядного сумматора.

Модель игровая , если она описывает, реализует некоторую игровую ситуацию между участниками игры (лицами, коалициями).

Пример. Пусть игрок 1 - добросовестный налоговый инспектор, а игрок 2 - недобросовестный налогоплательщик. Идет процесс (игра) по уклонению от налогов (с одной стороны) и по выявлению сокрытия уплаты налогов (с другой стороны). Игроки выбирают натуральные числа i и j (i,jn), которые можно отождествить, соответственно, со штрафом игрока 2 за неуплату налогов при обнаружении факта неуплаты игроком 1 и с временной выгодой игрока 2 от сокрытия налогов (в средне- и долгосрочном плане штраф за сокрытие может оказаться намного более ощутимым). Рассмотрим матричную игру с матрицей выигрышей порядка n. Каждый элемент этой матрицы A определяется по правилу a ij =|i-j|. Модель игры описывается этой матрицей и стратегией уклонения и поимки. Эта игра - антагонистическая, бескоалиционная (формализуемые в математической теории игр понятия мы пока будем понимать содержательно, интуитивно).

Модель алгоритмическая , если она описана некоторым алгоритмом или комплексом алгоритмов, определяющим ее функционирование, развитие. Введение такого, на первый взгляд, непривычного типа моделей (действительно, кажется, что любая модель может быть представлена алгоритмом её исследования), на наш взгляд, вполне обосновано, так как не все модели могут быть исследованы или реализованы алгоритмически.

Пример. Моделью вычисления суммы бесконечного убывающего ряда чисел может служить алгоритм вычисления конечной суммы ряда до некоторой заданной степени точности. Алгоритмической моделью корня квадратного из числа x может служить алгоритм вычисления его приближенного сколь угодно точного значения по известной рекуррентной формуле.

Модель структурная , если она представима структурой данных или структурами данных и отношениями между ними.

Пример. Структурной моделью может служить описание (табличное, графовое, функциональное или другое) трофической структуры экосистемы. Постройте такую модель (одна из них была приведена выше).

Модель графовая , если она представима графом или графами и отношениями между ними.

Модель иерархическая (древовидная), если представима некоторой иерархической структурой (деревом).

Пример. Для решения задачи нахождения маршрута в дереве поиска можно построить, например, древовидную модель (рис. 10.2):

Рис. 10.2.

Модель сетевая , если она представима некоторой сетевой структурой.

Пример. Строительство нового дома включает операции, приведенные в нижеследующей таблице.

Таблица работ при строительстве дома

Операция

Время выполнения (дни)

Предшествующие операции

Дуги графа

Расчистка участка

Закладка фундамента

Расчистка участка (1)

Возведение стен

Закладка фундамента (2)

Монтаж электропроводки

Возведение стен (3)

Штукатурные работы

Монтаж электропроводки (4)

Благоустройство территории

Возведение стен (3)

Отделочные работы

Штукатурные работы (5)

Настил крыши

Возведение стен (3)

Сетевая модель (сетевой график) строительства дома дана на рис. 10.3.


Рис. 10.3.

Две работы, соответствующие дуге 4-5, параллельны, их можно либо заменить одной, представляющей совместную операцию (монтаж электропроводки и настил крыши) с новой длительностью 3+5=8, либо ввести на одной дуге фиктивное событие, тогда дуга 4-5 примет вид.

Модель языковая, лингвистическая , если она представлена некоторым лингвистическим объектом, формализованной языковой системой или структурой. Иногда такие модели называют вербальными, синтаксическими и т.п.

Пример. Правила дорожного движения - языковая, структурная модель движения транспорта и пешеходов на дорогах. Пусть B - множество производящих основ существительных, C - множество суффиксов, P - прилагательных, "+" - операция конкатенации слов, ":=" - операция присваивания, "=>" - операция вывода (выводимости новых слов), Z - множество значений (смысловых) прилагательных. Языковая модель M словообразования: <=

:=+. При b i - "рыб(а)", s i - "н(ый)", получаем по этой модели p i - "рыбный", z i - "приготовленный из рыбы".

Модель визуальная , если она позволяет визуализировать отношения и связи моделируемой системы, особенно в динамике.

Пример. На экране компьютера часто пользуются визуальной моделью того или иного объекта, например, клавиатуры в программе-тренажере по обучению работе на клавиатуре.

Модель натурная , если она есть материальная копия объекта моделирования .

Пример. Глобус - натурная географическая модель земного шара.

Модель геометрическая , графическая, если она представима геометрическими образами и объектами.

Пример. Макет дома является натурной геометрической моделью строящегося дома. Вписанный в окружность многоугольник дает модель окружности. Именно она используется при изображении окружности на экране компьютера. Прямая линия является моделью числовой оси, а плоскость часто изображается как параллелограмм.

Модель клеточно-автоматная , если она представляет систему с помощью клеточного автомата или системы клеточных автоматов. Клеточный автомат - дискретная динамическая система, аналог физического (непрерывного) поля. Клеточно-автоматная геометрия - аналог евклидовой геометрии. Неделимый элемент евклидовой геометрии - точка, на основе ее строятся отрезки, прямые, плоскости и т.д. Неделимый элемент клеточно-автоматного поля - клетка, на основе её строятся кластеры клеток и различные конфигурации клеточных структур. Это "мир" некоторого автомата, исполнителя, структуры. Представляется клеточный автомат равномерной сетью клеток ("ячеек") этого поля. Эволюция клеточного автомата разворачивается в дискретном пространстве - клеточном поле. Такие клеточные поля могут быть вещественно-энерго-информационными. Законы эволюции локальны, т.е. динамика системы определяется задаваемым неизменным набором законов или правил, по которым осуществляется вычисление новой клетки эволюции и его материально-энерго-информационной характеристики в зависимости от состояния окружающих ее соседей (правила соседства, как уже сказано, задаются). Смена состояний в клеточно-автоматном поле происходит одновременно и параллельно, а время идет дискретно. Несмотря на кажущуюся простоту их построения, клеточные автоматы могут демонстрировать разнообразное и сложное поведение. В последнее время они широко используются при моделировании не только физических, но и социально-экономических процессов.

Клеточные автоматы (поля) могут быть одномерными, двумерными (с ячейками на плоскости), трехмерными (с ячейками в пространстве) или же многомерными (с ячейками в многомерных пространствах).

Пример. Классическая клеточно-автоматная модель - игра "Жизнь" Джона Конвея. Она описана во многих книгах. Мы рассмотрим другую клеточно-автоматную модель загрязнения среды, диффузии загрязненителя в некоторой среде. 2D-клеточный автомат (на плоскости) для моделирования загрязнения среды может быть сгенерирован следующими правилами:

  • · плоскость разбивается на одинаковые клетки: каждая клетка может находиться в одном из двух состояний: состояние 1 - в ней есть диффундирующая частица загрязнителя, и состояние 0 - если ее нет;
  • · клеточное поле разбивается на блоки 2Ч2 двумя способами, которые будем называть четным и нечетным разбиениями (у чётного разбиения в кластере или блоке находится четное число точек или клеток поля, у нечетного блока - их нечетное число);
  • · на очередном шаге эволюции каждый блок четного разбиения поворачивается (по задаваемому правилу распространения загрязнения или генерируемому распределению случайных чисел) на заданный угол (направление поворота выбирается генератором случайных чисел);
  • · аналогичное правило определяется и для блоков нечетного разбиения;
  • · процесс продолжается до некоторого момента или до очищения среды.

Пусть единица времени - шаг клеточного автомата, единица длины - размер его клетки. Если перебрать всевозможные сочетания поворотов блоков четного и нечетного разбиения, то видим, что за один шаг частица может переместиться вдоль каждой из координатных осей на расстояние 0, 1 или 2 (без учета направления смещения) с вероятностями, соответственно, p 0 =1/4, p 1 =1/2, p 2 =1/4. Вероятность попадания частицы в данную точку зависит лишь от ее положения в предыдущий момент времени, поэтому рассматриваем движение частицы вдоль оси х (y) как случайное.

На рис. 10.4 - фрагменты работы программы клеточно-автоматной модели загрязнения клеточной экосреды (размеры клеток увеличены).



Рис. 10.4. Окно справа - состояние клеточного поля (в верхнем - исходное, слабо загрязненное, в нижнем - после 120 циклов загрязнения), в левом верхнем углу - "Микроскоп", увеличивающий кластер поля, в середине слева - график динамики загрязнения, внизу слева - индикаторы загрязнения

Модель фрактальная , если она описывает эволюцию моделируемой системы эволюцией фрактальных объектов. Если физический объект однородный (сплошной), т.е. в нем нет полостей, можно считать, что плотность не зависит от размера. Например, при увеличении R до 2R масса увеличится в R 2 раз (круг) и в R 3 раз (шар), т.е. M(R)~R n (связь массы и длины), n - размерность пространства. Объект, у которого масса и размер связаны этим соотношением, называется "компактным". Плотность его

Если объект (система) удовлетворяет соотношению M(R)~R f(n) , где f(n)

Так как f(n)-n<0, то плотность фрактального объекта уменьшается с увеличением размера, а с(R) является количественной мерой разряженности, ветвистости (структурированности) объекта.

Пример. Пример фрактальной модели - множество Кантора. Рассмотрим . Разделим его на 3 части и выбросим средний отрезок. Оставшиеся 2 промежутка опять разделим на три части и выкинем средние промежутки и т.д. Получим множество, назывемое множеством Кантора. В пределе получаем несчетное множество изолированных точек (рис. 10.5)

Рис. 10.5.

Можно показать, что если n - размерность множества Кантора, то n=ln2/ln3?0,63, т.е. этот объект (фрактал) еще не состоит только из изолированных точек, хотя уже и не состоит из отрезка. Фрактальные объекты самоподобны , если они выглядят одинаково в любом пространственном масштабе, масштабно инвариантны, фрагменты структуры повторяются через определенные пространственные промежутки. Поэтому они очень хорошо подходят для моделирования нерегулярностей, так как позволяют описывать (например, дискретными моделями) эволюцию таких систем для любого момента времени и в любом пространственном масштабе.

Самоподобие встречается в самых разных предметах и явлениях.

Пример. Самоподобны ветки деревьев, снежинки, экономические системы (волны Кондратьева), горные системы.

Фрактальная модель применяется обычно тогда, когда реальный объект нельзя представить в виде классической модели , когда имеем дело с нелинейностью (многовариантностью путей развития и необходимостью выбора) и недетерминированностью, хаотичностью и необратимостью эволюционных процессов.

Тип модели зависит от информационной сущности моделируемой системы, от связей и отношений его подсистем и элементов, а не от его физической природы.

Пример. Математические описания (модели ) динамики эпидемии инфекционной болезни, радиоактивного распада, усвоения второго иностранного языка, выпуска изделий производственного предприятия и т.д. являются одинаковыми с точки зрения их описания, хотя процессы различны.

Границы между моделями различного типа или же отнесение модели к тому или иному типу часто весьма условны. Можно говорить о различных режимах использования моделей - имитационном, стохастическом и т.д.

Модель включает в себя: объект О, субъект (не обязательный) А, задачу Z, ресурсы B, среду моделирования С: М=.

Основные свойства любой модели :

  • · целенаправленность - модель всегда отображает некоторую систему, т.е. имеет цель;
  • · конечность - модель отображает оригинал лишь в конечном числе его отношений и, кроме того, ресурсы моделирования конечны;
  • · упрощенность - модель отображает только существенные стороны объекта и, кроме того, должна быть проста для исследования или воспроизведения;
  • · приблизительность - действительность отображается моделью грубо или приблизительно;
  • · адекватность - модель должна успешно описывать моделируемую систему;
  • · наглядность, обозримость основных ее свойств и отношений;
  • · доступность и технологичность для исследования или воспроизведения;
  • · информативность - модель должна содержать достаточную информацию о системе (в рамках гипотез, принятых при построении модели ) и должна давать возможность получить новую информацию;
  • · сохранение информации, содержавшейся в оригинале (с точностью рассматриваемых при построении модели гипотез);
  • · полнота - в модели должны быть учтены все основные связи и отношения, необходимые для обеспечения цели моделирования ;
  • · устойчивость - модель должна описывать и обеспечивать устойчивое поведение системы, если даже она вначале является неустойчивой;
  • · целостность - модель реализует некоторую систему (т.е. целое);
  • · замкнутость - модель учитывает и отображает замкнутую систему необходимых основных гипотез, связей и отношений;
  • · адаптивность - модель может быть приспособлена к различным входным параметрам, воздействиям окружения;
  • · управляемость (имитационность) - модель должна иметь хотя бы один параметр, изменениями которого можно имитировать поведение моделируемой системы в различных условиях;
  • · эволюционируемость - возможность развития моделей (предыдущего уровня).

Жизненный цикл моделируемой системы:

  • · сбор информации об объекте, выдвижение гипотез, предмодельный анализ;
  • · проектирование структуры и состава моделей (подмоделей);
  • · построение спецификаций модели , разработка и отладка отдельных подмоделей, сборка модели в целом, идентификация (если это нужно) параметров моделей ;
  • · исследование модели - выбор метода исследования и разработка алгоритма (программы) моделирования ;
  • · исследование адекватности, устойчивости, чувствительности модели ;
  • · оценка средств моделирования (затраченных ресурсов);
  • · интерпретация, анализ результатов моделирования и установление некоторых причинно-следственных связей в исследуемой системе;
  • · генерация отчетов и проектных (народно-хозяйственных) решений;
  • · уточнение, модификация модели , если это необходимо, и возврат к исследуемой системе с новыми знаниями, полученными с помощью модели и моделирования .

Моделирование - метод системного анализа. Но часто в системном анализе при модельном подходе исследования может совершаться одна методическая ошибка, а именно, - построение корректных и адекватных моделей (подмоделей) подсистем системы и их логически корректная увязка не дает гарантий корректности построенной таким способом модели всей системы. Модель , построенная без учета связей системы со средой и ее поведения по отношению к этой среде, может часто лишь служить еще одним подтверждением теоремы Геделя, а точнее, ее следствия, утверждающего, что в сложной изолированной системе могут существовать истины и выводы, корректные в этой системе и некорректные вне ее.

Наука моделирования состоит в разделении процесса моделирования (системы, модели ) на этапы (подсистемы, подмодели), детальном изучении каждого этапа, взаимоотношений, связей, отношений между ними и затем эффективного описания их с максимально возможной степенью формализации и адекватности. В случае нарушения этих правил получаем не модель системы, а модель "собственных и неполных знаний".

Моделирование (в значении "метод", "модельный эксперимент") рассматривается как особая форма эксперимента, эксперимента не над самим оригиналом (это называется простым или обычным экспериментом), а над копией (заместителем) оригинала. Здесь важен изоморфизм систем (оригинальной и модельной) - изоморфизм, как самой копии, так и знаний, с помощью которых она была предложена.

Модели и моделирование применяются по основным направлениям:

  • · обучение (как моделям , моделированию , так и самих моделей );
  • · познание и разработка теории исследуемых систем (с помощью каких-либо моделей , моделирования , результатов моделирования );
  • · прогнозирование (выходных данных, ситуаций, состояний системы);
  • · управление (системой в целом, отдельными подсистемами системы), выработка управленческих решений и стратегий;
  • · автоматизация (системы или отдельных подсистем системы).

Вопросы для самоконтроля

  • 1. Что такое модель , для чего она нужна и как используется? Какая модель называется статической (динамической, дискретной и т.д.)?
  • 2. Каковы основные свойства моделей и насколько они важны?
  • 3. Что такое жизненный цикл моделирования (моделируемой системы)?

Задачи и упражнения

  • 1. В последнее время наиболее актуальной проблемой в экономике стало воздействие уровня налогообложения на хозяйственную деятельность. В ряду прочих принципов взимания налогов важное место занимает вопрос о той предельной норме, превышение которой влечет потери общества и государства, несоизмеримые с текущими доходами бюджета. Определение совокупной величины налоговых сборов таким образом, чтобы она, с одной стороны, максимально соответствовала государственным расходам, а с другой, оказывала минимум отрицательного воздействия на деловую активность, относится к числу главных задач управления государства. Опишите, какие, на ваш взгляд, параметры необходимо учесть в модели налогообложения хозяйственной деятельности, соответствующей указанной цели. Составьте простую (например, рекуррентного вида) модель сбора налогов, исходя из налоговых ставок, изменяемых в указанных диапазонах: налог на доход - 8-12 %, налог на добавленную стоимость - 3-5 %, налог на имущество юридических лиц - 7-10%. Совокупные налоговые отчисления не должны превышать 30-35% прибыли. Укажите в этой модели управляющие параметры. Определите одну стратегию управления с помощью этих параметров.
  • 2. Заданы числовой - x i , i=0, 1, ..., n и символьный - y i , i=0, 1, ..., m массивы X и Y. Составить модель стекового калькулятора, который позволяет осуществлять операции:
  • 1. циклический сдвиг вправо массива X или Y и запись заданного числа в x 0 или символа операции - y 0 (в "верхушку стека" X(Y)) т.е. выполнение операции "вталкивание в стек";
  • 2. считывание "верхушки стека" и последующий циклический сдвиг влево массива X или Y - операция "выталкивания из стека";
  • 3. обмен местами x 0 и x 1 или y 0 и y 1 ;
  • 4. "раздваивание верхушки стека", т.е. получение копии x 0 или y 0 в x 1 или y 1 ;
  • 5. считывание "верхушки стека" Y (знака +, -, * или /), затем расшифровка этой операции, считыавние операндов операций с "верхушки" X, выполнение этой операции и помещение результата в "верхушку" X.
  • 3. Известна классическая динамическая модель В.Вольтерра системы типа "хищник-жертва", являющейся моделью типа "ресурс-потребление". Рассмотрим клеточно-автоматную модель такой системы. Алгоритм поведения клеточного автомата, моделирующего систему типа "хищник-жертва", состоит из следующих этапов:
  • 1. задаются начальные распределения хищников и жертв, случайно или детерминированно;
  • 2. определяются законы "соседства" особей (правила взаимоотношений) клеток, например, "соседями" клетки с индексами (i,j) считаются клетки (i-1,j), (i,j+1), (i+1,j), (i,j-1);
  • 3. задаются законы рождаемости и смертности клеток, например, если у клетки меньше двух (больше трех) соседей, она отмирает "от одиночества" ("от перенаселения").

Цель моделирования : определение эволюции следующего поколения хищников и жертв, т.е., используя заданные законы соседства и динамики дискретного развития (время изменяется дискретно), определяются число новых особей (клеток) и число умерших (погибших) особей; если достигнута заданная конфигурация клеток или развитие привело к исчезновению вида (цикличности), то моделирование заканчивается.

Темы научных исследований и рефератов, интернет-листов

  • 1. Моделирование как метод, методология, технология.
  • 2. Модели в микромире и макромире.
  • 3. Линейность моделей (наших знаний) и нелинейность явлений природы и общества.

Познание - это специфический вид деят-ти ч-ка, направленный на постижение окружающего мира и самого себя в этом мире.

Анализ (греч. разложение) – разделение объекта на составные части с целью их самостоятельного изучения. Задача анализа: из различного рода данных составить общую целостную картину процесса, выявить присущие ему закономерности, тенденции. С позиций диалектики, анализ рассматривается как специальный прием исследования явл-й и выработки теоретических знаний об этих явл-ях. Основная познавательная задача диалектического анализа - чтобы из многообразия сторон изучаемого предмета выделить его сущ-ть не путем механического расчленения целого на части, а путем выделения и изучения сторон основного противоречия в предмете, обнаружить основу, связывающую все его стороны в единую целостность, и вывести на этой основе закономерность развивающегося целого. Виды анализа : механическое расчленение; определение динамического состава; выявление форм в/действия элементов целого.

Синтез (греч. соединение) – объединение реальное или мысленное различных сторон, частей предмета в единое целое. Синтез рассматривают как процесс практического или мысленного воссоединение целого из частей или соединение различных элементов, сторон предмета в единое целое, необходимый этап познания. Для совр-й науки характерен не только внутри-, но и междисциплинарный синтез. Рез-м синтеза явл-ся совершенно новое образование, свойства кот-го не есть только внешнее соединение свойств компонентов, но также и рез-т их внутренней взаимосвязи и взаимозависимости.

Индукция ) – логический метод исследования, связанный с обобщением рез-в наблюдений и экспериментов и движением мысли от единичного к общему. Индуктивные выводы всегда имеют вероятностный хар-р. Виды индуктивных обобщений: а) Индукция популярная , когда регулярно повторяющиеся свойства, наблюдаемые у некот-х представителей изучаемого множества (класса) и фиксируемые в посылках индуктивного умозаключения, переносятся на всех представителей изучаемого множества (класса) – в том числе и на неисследованные его части. (напр, факт наличия черных лебедей). б) Индукция неполная – всем представителям изучаемого множества принадлежит свойство “n” на том основании, что “n” принадлежит некоторым представителям этого множества. Напр, некоторые металлы имеют свойство электропроводности, значит, все металлы электропроводны. в) Индукция полная , в кот-й делается заключение о том, что всем представителям изучаемого множества принадлежит свойство “n” на основании полученной при опытном исследовании информации о том, что каждому представителю изучаемого множества принадлежит свойство “n”. г) Индукция научная , в кот-й, кроме формального обоснования полученного индуктивным путем обобщения, дается содержательное дополнительное обоснование его истинности, – в том числе с помощью дедукции.



Дедукция – во-первых, переход в процессе познания от общего к частному, выведение единичного из общего; во-вторых, процесс логического вывода, т е перехода по тем или иным правилам логики от некот-х данных предложений – посылок к их заключениям. Дедукция мешает воображению впадать в заблуждение, лишь она позволяет после установления индукцией новых исходных пунктов вывести следствия и сопоставить выводы с фактами. Дедукция может обеспечить проверку гипотез.

Аналогия – метод научного познания при кот-м устанавливается сходство в некот-х сторонах, кач-х и отнош-х между нетождественными объектами. Умозаключение по аналогии – выводы, кот-е делаются на основании такого сходства. Т о, при выводе по аналогии знание, полученное из рассмотрения какого-либо объекта переносится на др, менее изученный и менее доступный для исследования объект. Аналогия не дает достоверного знания. Для повышения вероятности выводов по аналогии необходимо стремиться к тому, чтобы: а) были схвачены внутренние, а не внешние свойства сопоставляемых объектов; б) эти объекты были подобны в важнейших и существенных признаках, а не в случайных и второстепенных; в) круг совпадающих признаков был как можно шире; г) учитывалось не только сходство, но и различия – чтобы последние не перенести на другой объект.

Моделирование как метод научного познания представляет собой воспроизведение хар-к некоторого объекта на другом объекте, специально созданном для их изучения



. Модель – объект, кот-й имеет сходство в некоторых отнош-х с прототипом и служит средством описания и/или объяснения, и/или прогнозирования поведения прототипа. Потребность в моделировании возникает тогда, когда исследование самого объекта невозможно, затруднительно, дорого. Между моделью и оригиналом должно сущ-ть известное сходство, кот-е позволяет переносить информацию, полученную в рез-те исследования модели, на оригинал. При физическом (предметном) моделировании конкретного объекта его изучение заменяется исследованием некоторой модели, имеющей ту же физическую природу, что и оригинал (модели самолетов). При идеальном (знаковом) моделировании модели выступают в виде схем, графиков, чертежей. К идеальному моделированию относят мысленное моделирование ”: 1) Наглядное моделирование производится на базе представлений исследователя о реальном объекте при помощи создания наглядной модели, отображающей явл-я и процессы, протекающие в объекте. Наглядное моделирование : 1.1. При гипотетическом моделировании закладывается гипотеза о закономерностях протекания процессов в реальном объекте, кот-я отражает уровень знаний исследователя об объекте и базируется на причинно-следственных связях между входом и выходом изучаемого объекта. 1.2 Аналоговое моделирование основывается на применении аналогий различного уровня. 1.3. Макетированное моделирование связано с созданием макета реального объекта в определенном масштабе и его изучения. 2) Символическое моделирование – это искусственный процесс создания логического объекта, кот-й замещает реальный и выражает его основные свойства с помощью определенной системы знаков и символов. Символическое моделирование принято подразделять на языковое и знаковое. 3) Математическое моделирование основано на описании реального объекта с помощью математического аппарата.

Классификация - разбиение множества (класса) объектов на подмножества (подклассы) по определенным признакам. В научной классификации свойства объекта поставлены в функциональную связь с его положением в определенной системе. Различают искусственную и естественную классификацию: в отличии от искусственной (в ее основе лежат не существенные сходства и различия объекта, для систематизации предметов (алфав. каталог), в естественной классификации по максимальному количеству существенных признаков объекта, определяется его положение в системе (напр, естественная система организмов, периодическая система элементов Менделеева). Классификацией обычно наз-т деление объектов, кот-е явл-ся объектами изучения той или иной науки.

Методами обработки и систематизации знаний эмпирического уровня прежде всего являются синтез и анализ. Анализ- процесс мысленного, а нередко и реального расчленения предмета, явления на части(признаки, свойства, отношения). Процедурой, обратной анализу, является синтез. Синтез- это соединение выделенных в ходе анализа сторон предмета в единое целое.

Индукция- способ рассуждения или метод получения знаний, при котором общий вывод делается на основе обобщения частных посылок. Индукция может полной и неполной.

Дедукция –способ рассуждения или метод движения знания от частного, т. е. процесс логического перехода от общих посылок к заключениям о частных случаях.

Аналогия – прием познания, при котором наличие сходства, совпадение признаков нетождественных объектов позволяет предложить их сходство и в других признаках. Аналогия- незаменимое средство наглядности, изобразительности мышления.

Метод моделирования основан на принципе подобия. Его сущность состоит в том, что непосредственно исследуется не сам объект, а его аналог, его заместитель, его модель, а затем полученные при изучении модели результаты по особым правилам переносятся на объект. Моделирование используется в тех случаях, когда сам объект труднодоступен, либо его прямое изучение экономически невыгодно.

27.Эмпиричкские методы научного познания: наблюдение и эксперимент. Виды экспериментов.

Наблюдение – это преднамеренное и целенаправленное восприятие явлений и процессов без прямого вмешательства в их течение, подчиненное задачам научного исследования. Основные требования к научному наблюдению следующие:

    Однозначность цели, замысла

    Системность в методах наблюдения

    Объективность

    Возможность контроля либо путем повторного наблюдения, либо с помощью эксперимента.

Важное место в процессе наблюдения занимает операция измерения. Измерение - есть определение отношения одной величины к другой, принятой за эталон.

Эксперимент в отличие от наблюдения- это метод познания, при котором явления изучаются в контролируемых и управляемых условиях. Эксперимент осуществляется на основе теории или гипотезы, определяющих постановку задачи и интерпретацию результатов. Различают несколько видов эксперимента:

    качественный, устанавливающий наличие или отсутствие предполагаемых теории явлений.

    измерительный или количественный, устанавливающий численные параметры какого-либо свойства предмета, процесса.

    особой разновидностью эксперимента в фундаментальных науках является мысленный эксперимент

    социальный эксперимент, осуществляемый в целях внедрения новых форм социальной организации и оптимизации управления. Сфера социального эксперимента ограничена моральными и правовыми нормами.

Наблюдение и эксперимент являются источником научных фактов. Факты – фундамент здания науки, они образуют эмпирическую основу науки, базу для выдвижения гипотез и создания теорий.

Публикации по теме