Интересные факты и полезные советы. Теоремы Гёделя о неполноте Вторая теорема геделя

Идея доказательства заключается в том, чтобы построить такое выражение, которое свидетельствовало бы о своей

собственной недоказуемости. Такое построение может быть выполнено в три этапа:

Первый этап - установление соответствия между формальной арифметикой и множеством целых чисел (гедели-зации);

Второй этап - построение некоторого специального свойства о котором неизвестно, является ли оно теоремой формальной арифметики или нет;

Третий этап - подстановка в вместо х определенного целого числа, связанного с самим т. е. замещение этими числами всех

Первый этап. Геделизация формальной арифметики

Формальная арифметика может быть арифметизирована (т. е. геделизирована) следующим образом: каждой ее теореме ставится в соответствие некоторое число. Однако так как всякое число также является теоремой, то всякая теорема может рассматриваться, с одной стороны, в качестве теоремы формальной арифметики, а с другой - как теорема над множеством теорем формальной арифметики, т. е. в качестве метатеоремы, соответствующей доказательству некой теоремы.

Таким образом, можно сделать вывод, что система формальной арифметики содержит также и свою собственную метасистему.

Теперь более конкретно и подробно изложим полученные результаты.

Во-первых, мы можем связать с каждым символом и формальной арифметики специальное кодовое обозначение, называемое в данном случае геделевым номером

Во-вторых, каждой последовательности символов мы ставим в соответствие тот же геделев номер с помощью некоторой функции композиции Пусть где представляют собой последовательности символов, которые образуют

В-третьих (и это существенно), каждому доказательству последовательности аксиом и правил подстановки (или правил замещения) ставится в соответствие число где обозначает последовательность теорем, используемых при доказательстве

Таким образом, всякому доказательству в формальной арифметике соответствует некоторое число - его геделев номер Всякое рассуждение формальной ариметики преобразуется в вычисления на множестве натуральных чисел.

Итак, вместо того чтобы производить манипуляции с символами, теоремами, доказательствами, можно воспользоваться

вычислениями на множестве целых чисел. Всякое выражение, подобное, например, следующему: доказуемо в формальной арифметике", теперь соответствует определенному числу, которое будем обозначать как

Сформулируем следующее положение.

Формальная метаарифметика содержится в множестве натуральных чисел, а оно само содержится в интерпретации формальной арифметики.

Эта ситуация с формальной арифметикой напоминает ситуацию с естественным языком: ведь нам ничто не мешает использовать его и для того, чтобы формулировать на нем основные его понятия и правила.

Надлежащий выбор функции позволяет осуществить однозначный переход от А к т. е. присвоить два разных числа-номера двум различным доказательствам. Например, можно так выбрать геделевы номера, чтобы каждому символу алфавита формальной арифметики соответствовало свое простое число, как показано, например, в табл. 3.2.

Таблица 3.2

Каждая формула (состоящая из символов изменяющимся от 1 до в свою очередь кодируется последовательностью, состоящей из первых простых чисел, т. е. числом

где простое число.

В свою очередь доказательство, т. е. последовательность из формул будет закодирована аналогичным образом числом

И наоборот, благодаря такому способу построения номеров становится возможным, исходя из некоторого числа, с помощью разложения его на простые множители (в силу единственности разложения натуральных чисел в произведения степеней простых чисел) возвратиться за два шага к показателям степени т. е. к примитивным символам формальной арифметики. Конечно, это имеет в основном лишь теоретическое значение, так как номера быстро становятся слишком большими

для того, чтобы ими можно было манипулировать. Однако следует отметить, что существенным является принципиальная возможность этой операции.

Пример. Пусть задано число Т, соответствующее некоторому доказательству и представляющее собой произведение простых чисел:

Это разложение означает, что доказательство теоремы содержит два этапа: один соответствует числу 1981027125 253, а другой - числу 1981027125 211. Разлагая снова на простые множители каждое из этих чисел, получим

Из таблицы кодирования алфавита формальной арифметики (табл. 3.2) находим, что нашим геделевым номерам для Этих двух чисел

будет соответствовать следующее доказательство:

Из формулы следует формула

Таким образом, в метаарифметике получено значение исходного числа из формальной арифметики.

Второй этап. Лемма Геделя

Всякому числу Т, связанному с доказательством, соответствует теорема доказуемая в формальной арифметике. “Геделизированную” формальную арифметику называют арифметизированной формальной арифметикой. Поскольку каждая аксиома и каждое правило арифметизированной формальной арифметики соответствуют какой-нибудь арифметической операции, то с помощью систенатизированной проверки можно определить, соответствует ли данное число Т доказательству какой-то теоремы Числа Т и образуют в этом случае пару сопряженных чисел. Выражение и являются сопряженными” Представимо внутри самой арифметизированной формальной арифметики. Это означает, что существует геделев номер который выражает в цифровой форме это утверждение.

Мы подошли к критическому пункту доказательства Геделя. Пусть А является выражением арифметизированной формальной арифметики, которое содержит какую-то свободную переменную. Вместо нее можно сделать подстановку какого-нибудь терма. В частности, можно заменить выражение А самим выражением А. В этом случае номер-выражение А выполняет одновременно две различные роли (см. выше построения

Кантора и Ришара): оно одновременно является истинным выражением для подстановки и результирующим термом. Эту специальную подстановку будем обозначать как Так формула означает, что число есть геделев номер, получаемый при выполнении подстановки - к выражению А:

Затем Гедель строит выражение (о котором неизвестно, представляет ли оно собой теорему или не-теорему), в которое вводит эту подстановку. Выражение имеет следующий вид:

Третий этап. Завершающая подстановка

В арифметизированной формальной арифметике это выражение представлено в цифровой форме. Пусть Е - его геделев номер. Так как выражение содержит свободную переменную то мы имеем право выполнить подстановку - над замещая числом Е и обозначая -замещение Е:

Это второе выражение обозначим через а его геделев номер через Е. Дадим интерпретации выражения е.

Первая интерпретация. Не существует такой пары для которой одновременно выполнялось бы следующее: с одной стороны, Т - номер арифметизированного доказательства теоремы арифметизированной ею самой, а с другой - было бы есть замещение Но так как есть такое же преобразование, как и другие, то оно представимо в термах и в их кодовых обозначениях - геделевых номерах и, следовательно, такой номер существует. Тогда, возможно, номер Т не существует.

Вторая интерпретация. Не существует арифметизированного доказательства Т теоремы которое было бы -замещением Е. Итак, если не существует доказательства, то потому, что само по себе не является теоремой. Отсюда вытекает третья интерпретация.

Третья интерпретация. Выражение, для которого геделев номер есть -замещение Е, не является теоремой арифметизированной формальной арифметики. Но в этом и заключается противоречие, так как по построению именно само является -замещением Е и номер есть не что иное по построению, как сам номер Е. Отсюда вытекает последняя интерпретация е.

Признаюсь, что саму идею рассмотрения вопроса о существовании бога с этой стороны я вычитал у Анатолия Александровича Вассермана:
http://ru.wikipedia.org/wiki/%D0%90%D0%BD%D0%B0%D1%82%D0%BE%D0%BB%D0%B8%D0%B9_%D0%90%D0%BB%D0%B5%D0%BA%D1%81%D0%B0%D0%BD%D0%B4%D1%80%D0%BE%D0%B2%D0%B8%D1%87_%D0%92%D0%B0%D1%81%D1%81%D0%B5%D1%80%D0%BC%D0%B0%D0%BD#.D0.A0.D0.B5.D0.BB.D0.B8.D0.B3.D0.B8.D0.BE.D0.B7.D0.BD.D1.8B.D0.B5_.D0.B2.D0.B7.D0.B3.D0.BB.D1.8F.D0.B4.D1.8B

Но мне бы хотелось развить эту идею и описать ее немного подробнее.
В религии (как и не в религии) присутствует некоторая аксиоматика построения. По крайней мере в идеальном случае, если это не просто слепое верование, а сознательный и обоснованный выбор. Например, аксиомой физики можно считать "природа познаваема с помощью разума и логических умозаключений, все законы физики одинаковы во всех точках пространства и в любое время". Например, аксиомой религии можно считать высказывание "бог существует и является первопричиной всего сущего". Иначе говоря, нет сомнения, что все многочисленые частности и ответвления можно свести к нескольким важнейшим никак не доказуемым утверждениям, которые и являются теми самыми аксиомами.

Рассмотрим с этих позиций религиозные верования. Важнейшая аксиома религии: "бог существует и является первопричиной всего сущего".
Теперь вспомним одну из важнейших математических теорем, теорему Гёделя.
http://elementy.ru/trefil/21142
Слабая теорема Гёделя: "Любая формальная система аксиом содержит неразрешенные предположения" или "если система аксиом полна, то она противоречива."
Сильная теорема Гёделя: "Логическая полнота (или неполнота) любой системы аксиом не может быть доказана в рамках этой системы. Для ее доказательства или опровержения требуются дополнительные аксиомы (усиление системы)."

Вспомним некоторые определения. Система аксиом полна, если любое утверждение сформулированное для данной системы аксиом доказуемо (то есть является либо истиным, либо ложным). Неразрешенное предположение - такое утверждение, относительно которого не может быть доказана ни его истиность, ни ложность, то есть утверждение логически не доказуемо. Система аксиом противоречива, если относительно одного и того же утверждения можно доказать как его истиность, так и его ложность.

Из теоремы Гёделя следует, что если понятие бога входит в аксиоматическую систему, то эта система не полна, то есть существуют следствия (явления), которые не доказуемы, то есть они могут существовать, а могут не существовать, это не доказуемо.
Но это противоречит следующим двум положениям (выбирайте любое наиболее убедительное): природа не содержит явлений, которые можно считать и существующими и не существующими, любое явление природы либо существует, либо не существует. Второе же положение говорит, что по определению бог является первопричиной всего, следовательно бог либо приводит к существованию некоторых вещей (утверждений), либо к их несуществованию, ссылаясь на бога можно либо доказать, либо опровергнуть любое утверждение. Это противоречит неполноте системы.

Или иначе. Если включить понятие бога в аксиоматическую систему и предположить ее полной (любое утверждение в полной сестеме аксиом доказуемо), то по теореме Гёделя такая система аксиом будет противоречивой, то есть будут существовать явления про которые можно доказать, что они и существуют, и не существуют.

Включать бога в противоречивую систему аксиом нет смысла, так как она противоречива, то есть в ней есть явления, про которые можно доказать, что они и существуют, и не существуют, что, как говорилось, противоречит природе и понятию бога.

Наконец, если понятие бога не входит в аксиоматическую систему, то оно не может считаться фундаментальной основой мироздания, из которой следует все существующее, что по сути противоречит определению бога.

Для справедливости данного доказательства необходимо признание справедливости законов математической логики (логика высказываний + исчисление предикатов), позволяющих устанавливать законы следствия, истиность, ложность, противоречивость, непротиворечивость утверждений и другие свойства и отношения между утверждениями.

Если же считать, что математическая логика не применима к исследованию вопроса существования бога, то следствием будет не возможность исследования этого вопроса с помощью рассуждений, с помощью разума. Иначе говоря, последовательный разум всегда приходит к отрицательному ответу на вопрос существования бога.

Что же получается в итоге... любой хоть сколько-нибудь рациональный человек, конечно, признает справедливость законов логики, а значит неизменно приходит к выводу, что бог в определении "причина всего сущего" не существует. Человек не рациональный, который утверждает, что бога можно познать только с помощью чувств (а не разума), конечно, может так утверждать, однако нету никакого способа убедить в этом другого, чувства не возможно передать. Более того понятие бога является понятием сформулированным разумом. Каким образом предлагается транслировать понятие разума в ощущение, да еще так, чтобы это можно было передать другому человеку - не ясно. Опять же хоть сколько-нибудь рациональный человек скажет, что это не возможно: абстрактное понятие разума перевести в чувство и ощутить его.

Наконец, есть еще один вариант: "бог - не первопричина всего". Тогда подобных противоречий не возникает, однако это является значительнейшим ослаблением позиций религии, так как именно то, что бог создал все, что бог - начало всех начал, является фундаментом для многочисленных утверждений религии и обоснований в спорах.

P.S. Стоит отметить еще одну любопытнейшую вещь, любопытную уже для физиков. В данном определении бога ничего не говорится о его разумности. То есть можно было бы добавить "бог - разумная причина всего сущего", однако это сужение определения, которое изначально и не требуется для доказательства. Без разумности понятие "бога" можно легко заменить на "сингулярность и большой взрыв - причина всего сущего". И ответ будет тот же самый: сингулярность и большой взрыв - не первопричина всего сущего.
Проведя еще большее абстрагирование можно сказать, что ни одно явление или причина не могут являться первопричиной всего сущего, то есть первопричины не существует в принципе. Рассуждая в рамках любой аксиоматики можно прийти к выводу, что первопричины всего не существует. Говоря совсем просто, до каких бы основ мы ни познали вселенную, всегда останутся вопросы в духе: "откуда появился большой взрыв, откуда появилась сингулярность, откуда появилась пульсирующая вселенная, откуда появилась мультивселенная, почему вселенная существует всегда?" и т.п. Первопричину всего не возможно найти в принципе, она не содержится ни в одном объекте, явлении или понятии. Следовательно для человека это эквивалентно ее отсутствию. Теоретически можно предположить существование стороннего наблюдателя за пределами нашей вселенной, который даст ответ на вопрос, откуда все взялось (та самая дополнительная аксиома, расширение в теореме Гёделя), однако тогда возникнет вопрос, откуда взялся сторонний наблюдатель, его вселенная и первопричина всего этого.

на тему: «ТЕОРЕМА ГЁДЕЛЯ»

Курт Гёдель

Курт Гёдель – крупнейший специалист по математической логике – родился 28 апреля 1906 г. В Брюнне (ныне г. Брно, Чехия). Окончил Венский университет, где защитил докторскую диссертацию, был доцентом в 1933–1938 гг. После аншлюса эмигрировал в США. С 1940 по 1963 г. Гёдель работал в Принстонском институте высших исследований. Гёдель – почетный доктор Йельского и Гарвардского университетов, член Национальной академии наук США и Американского философского общества.

В 1951 г. Курт Гёдель был удостоен высшей научной награды США – Эйнштейновской премии. В статье, посвященной этому событию, другой крупнейший математик нашего времени Джон фон Нейман писал : «Вклад Курта Гёделя в современную логику поистине монументален. Это – больше, чем просто монумент. Это веха, разделяющая две эпохи… Без всякого преувеличения можно сказать, что работы Гёделя коренным образом изменили сам предмет логики как науки».

Действительно, даже сухой перечень достижений Гёделя в математической логике показывает, что их автор по существу заложил основы целых разделов этой науки: теории моделей (1930 г.; так называемая теорема о полноте узкого исчисления предикатов, показывающая, грубо говоря, достаточность средств «формальной логики» для доказательства всех выражаемых на ее языке истинных предложений), конструктивной логики (1932–1933 гг.; результаты о возможности сведения некоторых классов предложений классической логики к их интуиционистским аналогам, положившие начало систематическому употреблению «погружающих операций», позволяющих осуществлять такое сведение различных логических систем друг другу), формальной арифметики (1932–1933 гг.; результаты о возможности сведения классической арифметики в интуиционистскую, показывающие в некотором смысле непротиворечивость первой относительно второй), теории алгоритмов и рекурсивных функций (1934 г.; определение понятия общерекурсивной функции, сыгравшего решающую роль в установлении алгоритмической неразрешимости ряда важнейших проблем математики, с одной стороны. И в реализации логико-математических задач на электронно-вычислительных машинах – с другой), аксиоматической теории множеств (1938 г.; доказательство относительной непротиворечивости аксиомы выбора и континуум-гипотезы Кантора от аксиом теории множеств, положившее начало серии важнейших результатов об относительной непротиворечивости и независимости теоретико-множественных принципов).

Теорема Гёделя о неполноте

Введение

В 1931 г. В одном из немецких научных журналов появилась сравнительно небольшая статья с довольно устрашающим названием «О формально неразрешимых предложениях Principia Mathematica и родственных систем». Автором ее был двадцатипятилетний математик из Венского университета Курт Гедель, впоследствии работавший в Принстонском институте высших исследований. Работа эта сыграла решающую роль в истории логики и математики. В решении Гарвардского университета о присуждении Гёделю почетной докторской степени (1952) она была охарактеризована как одно из величайших достижений современной логики.

Однако в момент опубликования ни название гёделевской работы. Ни содержание ее ничего не говорили большинству математиков. Упомянутые в ее названии Principia Mathematica – это монументальных трехтомный трактат Альфреда Норта Уайтхеда и Бертрана Рассела, посвященный математической логике и основаниям математики; знакомство с трактатом отнюдь не являлось необходимым условием для успешной работы в большей части разделов математики. Интерес к разбираемым в работе Гёделя вопросам всегда был уделом весьма немногочисленной группы учёных. В то же время рассуждения, приведенные Гёделем в его доказательствах, были для своего времени столь необычными. Что для полного их понимания требовалось исключительное владение предметом и знакомство с литературой, посвященной этим весьма специфическим проблемам.

Первая теорема о неполноте

Первая теорема Гёделя о неполноте , по всей видимости, является наиболее знаменательным результатом в математической логике. Она звучит следующим образом:

Для произвольной непротиворечивой формальной и вычислимой теории, в которой можно доказать базовые арифметические высказывания, может быть построено истинноеарифметическое высказывание, истинность которого не может быть доказана в рамках теории . Другими словами, любая вполне полезная теория, достаточная для представления арифметики, не может быть одновременно непротиворечивой и полной.

Здесь слово «теория» обозначает «бесконечное множество» высказываний, некоторые из которых полагаются истинными без доказательств (такие высказывания называются аксиомами), а другие (теоремы) могут быть выведены из аксиом, а потому полагаются (доказываются) истинными. Словосочетание «доказуемый в теории» обозначает «выводимый из аксиом и примитивов теории (константных символов алфавита) при помощи стандартной логики (первого порядка)». Теория является непротиворечивой (согласованной), если в ней невозможно доказатьпротиворечивое высказывание. Словосочетание «может быть построено» обозначает, что существует некоторая механическая процедура (алгоритм), которая может построить высказывание на основе аксиом, примитивов и логики первого порядка. «Элементарная арифметика» заключается в наличии операций сложения и умножения над натуральными числами. Результирующее истинное, но недоказуемое высказывание часто обозначается для заданной теории как «последовательность Гёделя», однако существует бесконечно количество других высказываний в теории, которые имеют такое же свойство: недоказуемая в рамках теории истинность.

Предположение о том, что теория вычислима, обозначает, что в принципе возможно реализовать компьютерный алгоритм (компьютерную программу), которая (если ей разрешено вычислять произвольно долгое врея, вплоть до бесконечности) вычислит список всех теорем теории. Фактически, достаточно вычислить только список аксиом, и все теоремы могут быть эффективно получены из такого списка.

Первая теорема о неполноте была озаглавлена как «Теорема VI» в статье Гёделя от 1931 года On Formally Undecidable Propositions in Principia Mathematica and Related Systems I . В оригинальной записи Гёделя она звучала как:

«Общий вывод о существовании неразрешимых пропозиций заключается в следующем:

Теорема VI .

Для каждого ω-согласованного рекурсивного класса k ФОРМУЛ существуют рекурсивные ЗНАКИ r такие, что ни (v Genr ), ни ¬(v Genr )не принадлежат Flg (k )(где v есть СВОБОДНАЯ ПЕРЕМЕННАЯ r ) ».

Обозначение Flg происходит от нем. Folgerungsmenge – множество последовательностей, Gen происходит от нем. Generalisation – обобщение.

Грубо говоря, высказывание Гёделя G утверждает: «истинность G не может быть доказана». Если бы G можно было доказать в рамках теории, то в таком случае теория содержала бы теорему, которая противоречит сама себе, а потому теория была бы противоречива. Но если G недоказуемо, то оно истинно, а потому теория неполна (высказывание G невыводимо в ней).

Это пояснение на обычном естественном языке, а потому не совсем математически строго. Для предоставления строгого доказательства, Гёдель пронумеровал высказывания при помощи натуральных чисел. В этом случае теория, описывающая числа, также принадлежит множеству высказываний. Вопросы о доказуемости высказываний представимы в данном случае в виде вопросов о свойствах натуральных чисел, которые должны быть вычислимы, если теория полна. В этих терминах высказывание Гёделя гласит, что не существует числа с некоторым определённым свойством. Число с этим свойством будет являться доказательством противоречивости теории. Если такое число существует, теория противоречива вопреки первоначальному предположению. Так что предполагая, что теория непротиворечива (как предполагается в посылке теоремы), получается, что такого числа не существует, и высказывание Гёделя истинно, но в рамках теории этого доказать невозможно (следовательно, теория неполна). Важное концептуальное замечание состоит в том, что необходимо предположить, что теория непротиворечива, для того чтобы объявить высказывание Гёделя истинным.

Вторая теорема Гёделя о неполноте

Вторая теорема Гёделя о неполноте звучит следующим образом:

Для любой формально рекурсивно перечислимой (то есть эффективно генерируемой) теории T, включая базовые арифметические истинностные высказывания и определённые высказывания о формальной доказуемости, данная теория T включает в себя утверждение о своей непротиворечивости тогда и только тогда, когда теория T противоречива.

Иными словами, непротиворечивость достаточно богатой теории не может быть доказана средствами этой теории. Однако вполне может оказаться, что непротиворечивость одной конкретной теории может быть установлена средствами другой, более мощной формальной теории. Но тогда встаёт вопрос о непротиворечивости этой второй теории, и т.д.

Использовать эту теорему для доказательства того, что разумная деятельность не сводится к вычислениям, пытались многие. Например, еще в 1961 году известный логик Джон Лукас (John Lucas) выступал с подобной программой. Его рассуждения оказались довольно уязвимыми – однако он и задачу ставил более широко. Роджер Пенроуз использует несколько другой подход, который излагается в книге полностью, «с нуля».

Дискуссии

Следствия теорем затрагивают философию математики, особенно такие формализмы, которые используют формальную логику для определения своих принципов. Можно перефразировать первую теорему о неполноте следующим образом: «невозможно найти всеохватывающую систему аксиом, которая была бы способна доказать все математические истины, и ни одной лжи ». С другой стороны, с точки зрения строгой формальности, эта переформулировка не имеет особого смысла, поскольку она предполагает понятия «истина» и «ложь» определёнными в абсолютном смысле, нежели в относительном для каждой конкретной системы.

Экология жизни. Наука и открытия: Теореме Гёделя о неполноте, одной из самых известных теорем математической логики, повезло и не повезло одновременно. В этом она похожа на специальную теорию относительности Эйнштейна. С одной стороны, почти все о них что-то слышали. С другой интерпретации теория Эйнштейна «говорит, что всё в мире относительно».

Теореме Гёделя о неполноте , одной из самых известных теорем математической логики, повезло и не повезло одновременно. В этом она похожа на специальную теорию относительности Эйнштейна.

С одной стороны, почти все о них что-то слышали. С другой - в народной интерпретации теория Эйнштейна , как известно, «говорит, что всё в мире относительно ». А теорема Гёделя о неполноте (далее просто ТГН), в примерно столь же вольной фолк-формулировке, «доказывает, что есть вещи, непостижимые для человеческого разума ».

И вот одни пытаются приспособить её в качестве аргумента против мат ериализма , а другие, напротив, доказывают с её помощью, что бога нет. Забавно не только то, что обе стороны не могут оказаться правыми одновременно, но и то, что ни те, ни другие не удосуживаются разобраться, что же, собственно, эта теорема утверждает.

Итак, что же? Ниже я попытаюсь «на пальцах» рассказать об этом. Изложение моё будет, разумеется нестрогим и интуитивным, но я попрошу математиков не судить меня строго. Возможно, что для нематематиков (к которым, вообще-то, отношусь и я), в рассказанном ниже будет что-то новое и полезное.

Математическая логика - наука действительно довольно сложная, а главное - не очень привычная. Она требует аккуратных и строгих манёвров, при которых важно не перепутать реально доказанное с тем, что «и так понятно». Тем не менее, я надеюсь, что для понимания следующего ниже «наброска доказательства ТГН» читателю понадобится только знание школьной математики/информатики, навыки логического мышления и 15-20 минут времени.

Несколько упрощая, ТГН утверждает, что в достаточно сложных языках существуют недоказуемые высказывания. Но в этой фразе почти каждое слово нуждается в пояснении.

Начнём с того, что попытаемся разобраться, что такое доказательство. Возьмём какую-нибудь школьную задачку по арифметике. Например, пусть требуется доказать верность следующей незамысловатой формулы: «∀x(x−1)(x−2)−2=x(x−3)» (напомню, что символ ∀ читается «для любого» и называется «квантор всеобщности»). Доказать её можно, тождественно преобразуя, скажем, так:

    ∀x(x−1)(x−2)−2=x(x−3)

    ∀xx2−3x+2−2=x2−3x

    ∀xx2−3x–x2+3x=0

    ∀x0=0

    ИСТИНА

Переход от одной формулы к другой происходит по некоторым известным правилам. Переход от 4-й формулы к 5-й произошёл, скажем, потому, что всякое число равно самому себе - такова аксиома арифметики. А вся процедура доказывания, таким образом, переводит формулу в булево значение ИСТИНА. Результатом могла быть и ЛОЖЬ - если бы мы опровергали какую-то формулу. В таком случае мы бы доказали её отрицание. Можно себе представить программу (и такие программы действительно написаны), которые бы доказывали подобные (и более сложные) высказывания без участия человека.

Изложим то же самое чуть более формально. Пусть у нас есть множество, состоящее из строк символов какого-то алфавита, и существуют правила, по которым из этих строк можно выделить подмножество S так называемых высказываний - то есть грамматически осмысленных фраз, каждая из которых истинна или ложна . Можно сказать, что существует функция P, сопоставляющая высказываниям из S одно из двух значений: ИСТИНА или ЛОЖЬ (то есть отображающая их в булево множество B из двух элементов).

Назовём такую пару - множество высказываний S и функция P из >S в B - «языком высказываний» . Заметим, что в повседневном смысле понятие языка несколько шире. Например, фраза русского языка «А ну иди сюда! » не истинна и не ложна, то есть высказыванием, с точки зрения математической логики, не является.

Для дальнейшего нам понадобится понятие алгоритма. Приводить здесь формальное его определение я не буду - это завело бы нас довольно далеко в сторону. Ограничусь неформальным: «алгоритм» - эта последовательность однозначных инструкций («программа»), которая за конечное число шагов переводит исходные данные в результат.

Выделенное курсивом принципиально важно - если на каких-то начальных данных программа зацикливается, то алгоритма она не описывает. Для простоты и в применении к нашему случаю читатель может считать, что алгоритм - это программа, написанная на любом известном ему языке программирования, которая для любых входных данных из заданного класса гарантированно завершает свою работу с выдачей булевого результата.

Спросим себя: для всякой ли функции P существует «доказывающий алгоритм» (или, короче, «дедуктика »), эквивалентный этой функции, то есть переводящий каждое высказывание именно в то булево значение, что и она? Лаконичнее тот же вопрос можно сформулировать так: всякая ли функция над множеством высказываний вычислима?

Как вы уже догадываетесь, из справедливости ТГН следует, что нет, не всякая - существуют невычислимые функции такого типа. Иными словами, не всякое верное высказывание можно доказать.

Очень может быть, что это утверждение вызовет у вас внутренний протест. Связано это с несколькими обстоятельствами. Во-первых, когда нас учат школьной математике, то иногда возникает ложное впечатление почти полной тождественности фраз «теорема X верна» и «можно доказать или проверить теорему X».

Но, если вдуматься, это совершенно не очевидно. Некоторые теоремы доказываются довольно просто (например, перебором небольшого числа вариантов), а некоторые - очень сложно. Вспомним, например, знаменитую Великую теорему Ферма :

Не существует таких натуральных x,y,z и n>2, что xn+yn=zn,

доказательство которой нашли только через три с половиной века после первой формулировки (и оно далеко не элементарно). Следует различать истинность высказывания и его доказуемость. Ниоткуда не следует, что не существует истинных, но недоказуемых (и не проверяемых в полной мере) высказываний.

Второй интуитивный довод против ТГН более тонок. Допустим, у нас есть какое-то недоказуемое (в рамках данной дедуктики) высказывание. Что мешает нам принять его в качестве новой аксиомы? Тем самым мы чуть усложним нашу систему доказательств, но это не страшно.

Этот довод был бы совершенно верен, если бы недоказуемых высказываний было конечное число. На практике же может произойти следующее - после постулирования новой аксиомы вы наткнётесь на новое недоказуемое высказывание . Примете его в качестве ещё аксиомы - наткнётесь на третье. И так до бесконечности.

Говорят, что дедуктика останется неполной . Мы можем также принять силовые меры, чтобы доказывающий алгоритм заканчивался через конечное число шагов с каким-то результатом для любого высказывания языка. Но при этом он начнёт врать - приводить к истине для неверных высказываний, или ко лжи - для верных.

В таких случаях говорят, что дедуктика противоречива. Таким образом, ещё одна формулировка ТГН звучит так: «Существуют языки высказываний, для которых невозможна полная непротиворечивая дедуктика » - отсюда и название теоремы.

Иногда называют «теоремой Гёделя» утверждение о том, что любая теория содержит проблемы, которые не могут быть решены в рамках самой теории и требуют её обобщения. В каком-то смысле это верно, хотя такая формулировка скорее затуманивает вопрос, чем проясняет его.

Замечу также, что если бы речь шла о привычных функциях, отображающих множество вещественных чисел в него же, то «невычислимость» функции никого бы не удивила (только не надо путать «вычислимые функции» и «вычислимые числа» - это разные вещи).

Курт Гедель

Любому школьнику известно, что, скажем, в случае функции sin⁡x вам должно сильно повезти с аргументом, чтобы процесс вычисления точного десятичного представления значения этой функции окончился за конечное число шагов.

А скорее всего вы будете вычислять её с помощью бесконечного ряда, и это вычисление никогда не приведёт к точному результату, хотя может подойти к нему как угодно близко - просто потому, что значение синуса большинства аргументов иррационально . ТГН просто говорит нам о том, что даже среди функций, аргументами которой являются строки, а значениями - ноль или единица, невычислимые функции, хотя и совсем по другому устроенные, тоже бывают .

Для дальнейшего опишем «язык формальной арифметики». Рассмотрим класс строк текста конечной длины, состоящих из арабских цифр, переменных (букв латинского алфавита), принимающих натуральные значения, пробелов, знаков арифметических действий, равенства и неравенства, кванторов ∃ («существует») и ∀ («для любого») и, быть может, каких-то ещё символов (точное их количество и состав для нас неважны).

Понятно, что не все такие строки осмысленны (например, «12=+∀x>» - это бессмыслица). Подмножество осмысленных выражений из этого класса (то есть строк, которые истинны или ложны с точки зрения обычной арифметики) и будет нашим множеством высказываний.

Примеры высказываний формальной арифметики:

    1=1

    2×2=5

    ∃xx>3

    ∀y∀zy×z>y+ z

и т.д. Теперь назовём «формулой со свободным параметром» (ФСП) строку, которая становится высказыванием, если в качестве этого параметра подставить в неё натуральное число. Примеры ФСП (с параметром x):

    x=0

    2×2=x

    ∃yx+y>x

и т.д. Иными словами, ФСП эквивалентны функциям натурального аргумента с булевыми значением.

Обозначим множество всех ФСП буквой F. Понятно, что его можно упорядочить (например, сначала выпишем упорядоченные по алфавиту однобуквенные формулы, за ними - двухбуквенные и т.д.; по какому именно алфавиту будет происходить упорядочивание, нам непринципиально). Таким образом, любой ФСП соответствует её номер k в упорядоченном списке, и мы будем обозначать её Fk.

Перейдём теперь к наброску доказательства ТГН в такой формулировке:

Для языка высказываний формальной арифметики не существует полной непротиворечивой дедуктики.

Доказывать будем от противного.

Итак, допустим, что такая дедуктика существует. Опишем следующий вспомогательный алгоритм A, ставящий в соответствие натуральному числу k булево значение следующим образом :

1. Находим k-ю формулу в списке F.

2. Подставляем в неё число k в качестве аргумента.

3. Применяем к полученному высказыванию наш доказывающий алгоритм (по нашему предположению, он существует), который переводит его в ИСТИНУ или ЛОЖЬ.

4. Применяем логическое отрицание к полученному результату.

Проще говоря, алгоритм приводит к значению ИСТИНА тогда и только тогда, когда результат подстановки в ФСП её собственного номера в нашем списке даёт ложное высказывание.

Тут мы подходим к единственному месту, в котором я попрошу читателя поверить мне на слово.

Очевидно, что, при сделанном выше предположении, любой ФСП из F можно сопоставить алгоритм, содержащий на входе натуральное число, а на выходе – булево значение.

Менее очевидно обратное утверждение:

Лемма: Любому алгоритму, переводящему натуральное число в булево значение, соответствует какая-то ФСП из множества F.

Доказательство этой леммы потребовало бы, как минимум, формального, а не интуитивного, определения понятия алгоритма. Однако, если немного подумать, то она довольно правдоподобна.

В самом деле, алгоритмы записываются на алгоритмических языках, среди которых есть такие экзотические, как, например, Brainfuck, состоящий из восьми односимвольных слов, на котором, тем не менее, можно реализовать любой алгоритм. Странно было бы, если бы описанный нами более богатый язык формул формальной арифметики оказался бы беднее - хотя, без сомнения, для обычного программирования он не очень подходит.

Пройдя это скользкое место, мы быстро добираемся до конца.

Итак, выше мы описали алгоритм A. Согласно лемме, в которую я попросил вас поверить, существует эквивалентная ему ФСП. Она имеет какой-то номер в списке F - скажем, n. Спросим себя, чему равно Fn(n)? Пусть это ИСТИНА. Тогда, по построению алгоритма A (а значит, и эквивалентной ему функции Fn), это означает, что результат подстановки числа n в функцию Fn - ЛОЖЬ.

Аналогично проверяется и обратное: из Fn(n)=ЛОЖЬ следует Fn(n)=ИСТИНА. Мы пришли к противоречию, а значит, исходное предположение неверно. Таким образом, для формальной арифметики не существует полной непротиворечивой дедуктики. Что и требовалось доказать.

Здесь уместно вспомнить Эпименида, который, как известно, заявил, что все критяне - лжецы, сам являясь критянином. В более лаконичной формулировке его высказывание (известное как «парадокс лжеца») можно сформулировать так: «Я лгу ». Именно такое высказывание, само превозглашающее свою ложность, мы и использовали для доказательства.

В заключение я хочу заметить, что ничего особенного удивительного ТГН не утверждает. В конце концов, все давно привыкли, что не все числа представимы в виде отношения двух целых (помните, у этого утверждения есть очень изящное доказательство, которому больше двух тысяч лет?). И корнями полиномов с рациональными коэффициентами являются т оже не все числа . А теперь вот выяснилось, что не все функции натурального аргумента вычислимы.

Приведённый набросок доказательства относился к формальной арифметике, но нетрудно понять, что ТГН применима и к многим другим языкам высказываний. Разумеется, не всякие языки таковы. Например, определим язык следующим образом:

«Любая фраза китайского языка является верным высказыванием, если она содержится в цитатнике товарища Мао Дзе Дуна, и неверна, если не содержится».

Тогда соответствующий полный и непротиворечивый доказывающий алгоритм (его можно назвать «догматической дедуктикой») выглядит примерно так:

«Листай цитатник товарища Мао Дзе Дуна, пока не найдёшь искомое высказывание. Если оно найдено, то оно верно, а если цитатник закончился, а высказывание не найдено, то оно неверно».

Здесь нас спасает то, что любой цитатник, очевидно, конечен, поэтому процесс «доказывания» неминуемо закончится. Таким образом, к языку догматических высказываний ТГН неприменима. Но мы ведь говорили о сложных языках, правда? опубликовано


доказательство которой нашли только через три с половиной века после первой формулировки (и оно далеко не элементарно). Следует различать истинность высказывания и его доказуемость. Ниоткуда не следует, что не существует истинных, но недоказуемых (и не проверяемых в полной мере) высказываний.

Второй интуитивный довод против ТГН более тонок. Допустим, у нас есть какое-то недоказуемое (в рамках данной дедуктики) высказывание. Что мешает нам принять его в качестве новой аксиомы? Тем самым мы чуть усложним нашу систему доказательств, но это не страшно. Этот довод был бы совершенно верен, если бы недоказуемых высказываний было конечное число. На практике же может произойти следующее - после постулирования новой аксиомы вы наткнётесь на новое недоказуемое высказывание. Примете его в качестве ещё аксиомы - наткнётесь на третье. И так до бесконечности. Говорят, что дедуктика останется неполной . Мы можем также принять силовые меры, чтобы доказывающий алгоритм заканчивался через конечное число шагов с каким-то результатом для любого высказывания языка. Но при этом он начнёт врать - приводить к истине для неверных высказываний, или ко лжи - для верных. В таких случаях говорят, что дедуктика противоречива . Таким образом, ещё одна формулировка ТГН звучит так: «Существуют языки высказываний, для которых невозможна полная непротиворечивая дедуктика» - отсюда и название теоремы.

Иногда называют «теоремой Гёделя» утверждение о том, что любая теория содержит проблемы, которые не могут быть решены в рамках самой теории и требуют её обобщения. В каком-то смысле это верно, хотя такая формулировка скорее затуманивает вопрос, чем проясняет его.

Замечу также, что если бы речь шла о привычных функциях, отображающих множество вещественных чисел в него же, то «невычислимость» функции никого бы не удивила (только не надо путать «вычислимые функции» и «вычислимые числа» - это разные вещи). Любому школьнику известно, что, скажем, в случае функции вам должно сильно повезти с аргументом, чтобы процесс вычисления точного десятичного представления значения этой функции окончился за конечное число шагов. А скорее всего вы будете вычислять её с помощью бесконечного ряда, и это вычисление никогда не приведёт к точному результату, хотя может подойти к нему как угодно близко - просто потому, что значение синуса большинства аргументов иррационально. ТГН просто говорит нам о том, что даже среди функций, аргументами которой являются строки, а значениями - ноль или единица, невычислимые функции, хотя и совсем по другому устроенные, тоже бывают.

Для дальнейшего опишем «язык формальной арифметики». Рассмотрим класс строк текста конечной длины, состоящих из арабских цифр, переменных (букв латинского алфавита), принимающих натуральные значения, пробелов, знаков арифметических действий, равенства и неравенства, кванторов («существует») и («для любого») и, быть может, каких-то ещё символов (точное их количество и состав для нас неважны). Понятно, что не все такие строки осмысленны (например, « » - это бессмыслица). Подмножество осмысленных выражений из этого класса (то есть строк, которые истинны или ложны с точки зрения обычной арифметики) и будет нашим множеством высказываний.

Примеры высказываний формальной арифметики:


и т.д. Теперь назовём «формулой со свободным параметром» (ФСП) строку, которая становится высказыванием, если в качестве этого параметра подставить в неё натуральное число. Примеры ФСП (с параметром ):


и т.д. Иными словами, ФСП эквивалентны функциям натурального аргумента с булевыми значением.

Обозначим множество всех ФСП буквой . Понятно, что его можно упорядочить (например, сначала выпишем упорядоченные по алфавиту однобуквенные формулы, за ними - двухбуквенные и т.д.; по какому именно алфавиту будет происходить упорядочивание, нам непринципиально). Таким образом, любой ФСП соответствует её номер в упорядоченном списке, и мы будем обозначать её .

Перейдём теперь к наброску доказательства ТГН в такой формулировке:

  • Для языка высказываний формальной арифметики не существует полной непротиворечивой дедуктики.

Доказывать будем от противного.

Итак, допустим, что такая дедуктика существует. Опишем следующий вспомогательный алгоритм , ставящий в соответствие натуральному числу булево значение следующим образом:


Проще говоря, алгоритм приводит к значению ИСТИНА тогда и только тогда, когда результат подстановки в ФСП её собственного номера в нашем списке даёт ложное высказывание.

Тут мы подходим к единственному месту, в котором я попрошу читателя поверить мне на слово.

Очевидно, что, при сделанном выше предположении, любой ФСП из можно сопоставить алгоритм, содержащий на входе натуральное число, а на выходе – булево значение. Менее очевидно обратное утверждение:


Доказательство этой леммы потребовало бы, как минимум, формального, а не интуитивного, определения понятия алгоритма. Однако, если немного подумать, то она довольно правдоподобна. В самом деле, алгоритмы записываются на алгоритмических языках, среди которых есть такие экзотические, как, например, Brainfuck , состоящий из восьми односимвольных слов, на котором, тем не менее, можно реализовать любой алгоритм. Странно было бы, если бы описанный нами более богатый язык формул формальной арифметики оказался бы беднее - хотя, без сомнения, для обычного программирования он не очень подходит.

Пройдя это скользкое место, мы быстро добираемся до конца.

Итак, выше мы описали алгоритм . Согласно лемме, в которую я попросил вас поверить, существует эквивалентная ему ФСП. Она имеет какой-то номер в списке - скажем, . Спросим себя, чему равно ? Пусть это ИСТИНА. Тогда, по построению алгоритма (а значит, и эквивалентной ему функции ), это означает, что результат подстановки числа в функцию - ЛОЖЬ. Аналогично проверяется и обратное: из ЛОЖЬ следует ИСТИНА. Мы пришли к противоречию, а значит, исходное предположение неверно. Таким образом, для формальной арифметики не существует полной непротиворечивой дедуктики. Что и требовалось доказать.

Здесь уместно вспомнить Эпименида (см. портрет в заголовке), который, как известно, заявил, что все критяне - лжецы, сам являясь критянином. В более лаконичной формулировке его высказывание (известное как «парадокс лжеца») можно сформулировать так: «Я лгу». Именно такое высказывание, само превозглашающее свою ложность, мы и использовали для доказательства.

В заключение я хочу заметить, что ничего особенного удивительного ТГН не утверждает. В конце концов, все давно привыкли, что не все числа представимы в виде отношения двух целых (помните, у этого утверждения есть очень изящное доказательство , которому больше двух тысяч лет?). И корнями полиномов с рациональными коэффициентами являются тоже не все числа . А теперь вот выяснилось, что не все функции натурального аргумента вычислимы.

Приведённый набросок доказательства относился к формальной арифметике, но нетрудно понять, что ТГН применима и к многим другим языкам высказываний. Разумеется, не всякие языки таковы. Например, определим язык следующим образом:

  • «Любая фраза китайского языка является верным высказыванием, если она содержится в цитатнике товарища Мао Дзе Дуна, и неверна, если не содержится».

Тогда соответствующий полный и непротиворечивый доказывающий алгоритм (его можно назвать «догматической дедуктикой») выглядит примерно так:

  • «Листай цитатник товарища Мао Дзе Дуна, пока не найдёшь искомое высказывание. Если оно найдено, то оно верно, а если цитатник закончился, а высказывание не найдено, то оно неверно».

Здесь нас спасает то, что любой цитатник, очевидно, конечен, поэтому процесс «доказывания» неминуемо закончится. Таким образом, к языку догматических высказываний ТГН неприменима. Но мы ведь говорили о сложных языках, правда?

Публикации по теме