Как образовались полезные ископаемые осадочного происхождения. Как образуются и где размещены полезные ископаемые осадочного происхождения? Образование осадочных пород


Происхождение полезных ископаемых на Земле.

Гипотеза.

К существованию на Земле полезных ископаемых мы так привыкли, что и не помышляем задумываться: «Как они появились на Земле?». Считаем, что всё это естественно, как утро после ночи. Земля, конечно, создала полезные ископаемые для того, чтобы появившийся среди животного мира Земли «гомо сапиенс», смог ими воспользоваться для прогресса в своей жизни и деятельности, и создания для себя комфортных условий проживания, оправдывая высказывание, что человек - это венец творения Природы. Но давайте проследим путь - откуда и что появилось.

По современным научным знаниям Земля устроена следующим образом. В её центре находится ядро, состоящее в основном из железа, кремния и никеля. Его радиус около 3,5 тыс. км. Выше ядра расположена мантия толщиною примерно 2900 км., вещество которой состоит преимущественно из кислорода, магния, кремния и небольшого количества железа. В ней также присутствует и ряд других элементов, но все они вместе взятые составляют лишь 10% от первых четырёх. Всё это укрыто земной корой, средняя толщина которой примерно 35 км. . (Кора тоньше под океанами и толще под горами). На 99% земная кора состоит из восьми элементов, а именно: кислород - 62,5 %, кремний - 21 %, алюминий - 6,5 % и железо, магний, кальций, натрий и калий - количество каждого из них примерно от1,5% до 2%.

Как видно, всё имеет своё место, свой химический состав и приспособлено к своему местоположению. Температуры в глубинах Земли сейчас тоже не вызывают опасений. Они стабилизировались. Внутреннее вещество находится в состоянии остывания, которое продолжается примерно миллиард лет. Конечно, пока ещё существуют очаги активной вулканической деятельности, но они имеют локальный, а не глобальный характер. В мантии под корой температура уже ниже температуры расплава вещества. Под материками она 600-700 0 С, однако, с увеличением глубины температура повышается и в слое Гутенберга она уже 1500-1800 0 С, а в ядре - 4000-5000 0 С.

Так ли это было всегда? Давайте заглянем вглубь истории Земли, которая начинается с газопылевого облака, из которого и сформировалась Солнечная система. Это облако было обширно, то есть имело размеры примерно, такие же, как настоящая Солнечная система. Все чужеродные космические тела, попадая в пределы этого облака, переставали существовать самостоятельно, и становились частью этого облака.

Облако, вращаясь, превращалось в довольно плоский диск с шаром-Солнцем в центре. Частицы облака, притягиваясь друг к другу, создавали уже некие крупные образования, которые увеличиваясь и всё более интенсивно притягивая свободные частицы, со временем превращались в планеты. (Более подробную информацию можно получить в материалах сайта

Первоначально Солнечная система состояла из Солнца и десяти планет. Это были: Меркурий, Венера, Земля, Марс, Церера, Фаэтон, Юпитер, Сатурн, Уран и Нептун. Не было Плутона, спутников планет, астероидов, метеоритов и комет.

Солнце в своём раннем возрасте было несколько больше, имело более высокую температуру поверхности и, следовательно, большую мощность излучения энергии. В нём, как и в других звёздах, стали протекать внутренние процессы, которые приводили к вспышкам, наподобие «новых звёзд». Происходили они примерно раз в 30 тыс. лет и сопровождались выбросом солнечного вещества, которое затем, давлением тепла и света Солнца, выталкивалось прочь, достигая самых удаленных планет. Это вещество состояло из элементов, преимущественно верхней части таблицы Менделеева. Вещество слой за слоем оседало на планеты, увеличивая их массу. Естественно, оно было однородным, хотя слои могли отличаться друг от друга в процентах какого-либо элемента. Да и вещество, из которого Земля состояла в стадии формирования, также было практически одинаковым в любом месте и на любой глубине, так как это было вещество газопылевого облака, которое тоже было ни чем иным, как произвольной смесью различных элементов и их соединений.

При увеличении массы Земли, а с нею и внутреннего давления, в её глубинах начали происходить процессы, видимо на атомном уровне (имеется в виду не химическое соединение элементов, а преобразование атома одного элемента в атом другого с выделением энергии), которые и привели к разогреву всей массы Земли. Температуры, особенно в глубинах, со временем стали столь велики, что расплавленное вещество уже имело возможность перемещаться, занимая место сообразно своему удельному весу - тяжёлое - ближе к центру, а лёгкое - к поверхности.

В науке существует уверенность, что разогрев Земли осуществили радиоактивные элементы, и в первую очередь - уран. Не отрицая полностью эту версию, хотелось бы высказать некоторые сомнения по этому поводу.

Урана, задействованного в разогреве Земли, конечно же, было бы недостаточно, чтобы, разогреть всю массу Земли, а затем поддерживать эту температуру в течение 4 млрд. лет, поэтому мы остаёмся при мнении, что здесь имеют место иные реакции, с перестройкой атомов одних элементов в атомы других. Эти реакции возможны при высоких давлениях и температурах. Высокая температура не только используется элементом для действия, но и даёт ему возможность самому произвести энергию. Предполагается, что в этой реакции произведённая энергия превышает потреблённую.

Разогрев, начавшийся в центральной части, постепенно стал вовлекать в этот процесс и вышележащие слои, что привело к разогреву всего тела планеты. Конечно, потери тепла внешнего слоя были более значительные, поэтому температура на поверхности была намного ниже, чем в глубинах, тем не менее, на верхнем слое этот процесс отразился более заметно. Нижележащие слои, нагреваясь расплавлялись и, расширяясь перемешивались. Верхний же слой-панцирь, нагреваясь и расширяясь во все стороны, коробился, разламываясь, образуя горы и трещины, в которые устремилось расплавленное вещество земных недр.

Теперь эти же процессы рассмотрим с некоторым применением хронологии.

3500 млн. лет назад Земля - это уже состоявшаяся планета, правда, ещё холодная, однако внутри неё уже начался процесс, который впоследствии приведёт её к разогреву. Этот период в геохронологии называется архей. В позднем архее наука уже фиксирует рудообразование, но мы сосредоточим своё внимание на следующим за археем периоде, который называется протерозой, что означает - более ранняя жизнь, и как увидим, в этот период никакой жизни просто не могло существовать.

Протерозой состоял из трёх периодов. Нижний - начался 2600 млн. лет назад, средний - 1900 млн. лет, и верхний - 1600 млн. лет назад. Верхний протерозой длился 1030 млн. лет. Общее время протерозоя, который продолжался примерно 2 млрд. лет, было временем ада на Земле. В многочисленных очагах рудообразования расплавленное вещество недр изливалось, покрывая обширные пространства в десятки и сотни километров. Это вещество текло подобно реке или образовывало озёра расплава, который благодаря высоким температурам поверхности Земли, остывал долговременно, успевая вступать в химические реакции с сероводородом атмосферы и с веществом окружающего его грунта. О температурах расплавленного вещества можно судить по тем металлам, которые находились в расплаве.

Если в рудах были хром или титан, то температура должна была быть не ниже 2000 0 С, а если вольфрам, то даже выше 3500 0 С.

Извержение расплавленного вещества из недр длилось какое-то время, после чего наступал период затишья. Видимо, в глубинах в результате реакций, продолжающихся постоянно, накапливалось производное вещество и при достижении какого-то критического объёма эти реакции переходили уже в иную фазу с большим выделением энергии, что и приводило к выплеску вещества глубин наружу.

В различных месторождениях руд, геология в настоящее время обычно обнаруживает несколько активных фаз рудообразования. Их подсчитывают. Оказывается, таких активных фаз рудообразования насчитывается до десяти и даже более.

Ещё в рудообразовании представляет интерес то, что фактически из одного и того же исходного материала получаются различные руды с многочисленными сопутствующими элементами, как металлами, так и неметаллами. Конечно, нельзя даже предполагать, чтобы какие-то элементы под воздействием неизвестных сил, стягивались бы к своему очагу рудообразования: кто к медному, кто к железному, а кто-то ещё к какому-то. Такого просто не могло быть. Однако иногда в очагах рудообразования присутствие металлов оценивается в десятки процентов. Не могли же они просто переместиться в это место.

Можно допустить, что на ассортимент рудного месторождения влияла температура и ещё какие-то сопутствующие условия, определявшие, какой элемент должен быть основным в каком-то конкретном случае, то есть что-то вроде специализации месторождения. Может быть, науке удастся это определить, а пока только констатация фактов.

Рудообразование состояло, по крайней мере, из двух стадий. На первой стадии «выпекался» тот или иной элемент в чистом виде и ряд сопутствующих элементов в меньшем количестве, а во второй стадии уже был возможен целый ряд превращений этого элемента от образования так называемых твёрдых растворов с другими элементами, до химических реакций, как в самом жерле, так и при выходе на поверхность. Раскалённая руда в большинстве случаев не окислялась, так как в атмосфере отсутствовал чистый кислород, зато обязательно вступала в соединения с сероводородом, в изобилии находящемся в атмосфере. Возможно, поэтому преобладающее большинство руд - это соединения с серой.

Я в своей книжке рассказов - «Солнце - это основа всего», многократно указываю на различные действия Природы, которые можно считать запланированными, то есть она как бы выполняет программу жизненного цикла (в данном случае на Земле). И образование руд - это очередное подтверждение этого. Науке известно, что в архее атмосфера Земли состояла на 60% из углекислого газа. Далее следовали сероводород и аммиак. Все остальные газы составляли не более 10%. Если гигантская растительность в каменноугольном периоде 350-285 млн. лет назад освободила воздух от углекислого газа, спрятав углерод, атмосферы в стволы деревьев, которые сейчас покоятся под солнечными выбросами, став углём, то освобождение атмосферы Земли от сероводорода произошло в протерозое, и это выполнили рудные месторождения.

Теперь надо сделать какие-то выводы и переходить к чему-то конкретному. Как и прежде, я буду обращаться к материалам своего сайта и блога. Начну с того, что бесспорно. Это - утверждение, что всё в Солнечной системе получено от Солнца.

Солнце взорвалось как сверхновая звезда, и, распылив всё своё вещество, образовало газопылевое облако, где среди прочих элементов присутствовал гелий и его изотоп - гелий-3. Естественно, образовавшаяся из этого вещества молодая Земля уже имела в своей массе какое-то количество изотопа гелия. Природой, видимо, это было запланировано на все времена, чтобы с чего-то начинать развитие планет. Зная это, уже можно более уверенно сказать, что разогрев тела Земли осуществлялся с использованием энергии гелия-3.

Что же такого особенного в этом изотопе гелия? Почему он, а не какой-нибудь другой элемент наделён такой энергией?

В действительности большими энергиями наделены все без исключения атомы, аккумулирующие эту энергию в атомном ядре, но дело в том, что обычно ядро атома очень прочно, и это является препятствием к доступности получения этой энергии. Однако есть несколько элементов, ядра которых не столь устойчивы. Это, во-первых - изотопы водорода - дейтерий и тритий, и изотоп гелия-4 - гелий-3. Почему они неустойчивы?

Тело находится в устойчивом состоянии, только тогда, когда оно имеет три точки опоры. (Смотри вышеуказанный сайт и блог). Это относится ко всему, что нас окружает, в том числе и к частицам ядра атома. Частицы дейтерия, трития и гелия-3 не имеют трёх точек опоры (соприкосновения) друг с другом, Следовательно, они находятся в неустойчивом состоянии. Это дало возможность, при использовании дейтерия и трития, создать водородную бомбу, а гелий-3 сулит решить для землян проблему больших энергий. Освоение гелия-3 - надежда человечества.

Но там, где большие энергии, присутствует и большой риск. А вдруг энергии будет слишком много и это обернётся повторением ада, наподобие того, что был в протерозое? Ведь диаметр Земли, благодаря солнечным выбросам, увеличился на километры. К нашей радости этого не будет. Ведь основное количество гелия-3 «выгорело» ещё в протерозое. Но наука обнаружила большие запасы гелия-3 на Луне. Оказалось - его там столько, что можно черпать прямо с поверхности бульдозерами и черпалками. Он находится в осевшем на Луну веществе солнечных выбросов, которое находится там в первозданном состоянии. На Земле же, гелия-3 чрезвычайно мало. А, казалось бы, должно было быть иначе. Ведь на Землю оседает то же самое вещество солнечных выбросов и в десятки раз больше, чем на Луну. В чём же причина?
Есть разные варианты ответа на этот вопрос.

Первозданную сохранность вещества солнечных выбросов на Луне можно объяснить тем, что на Луне отсутствует атмосфера. В условиях Земли, при наличии атмосферы, гелий-3, возможно, просто был выдавлен более тяжёлыми газами воздуха, и теперь он находится в самых верхних слоях атмосферы. Другое. Возможно, подвергаясь воздействию атмосферы и живой природы Земли,он реагировал на эти воздействия, расходуя свою потенциальную энергию? Ещё. Возможно, он способствовал преобразованию грунта в почву? А может быть, этот перечень причин этим не ограничивается и этому могло способствовать ещё что-то, чего мы не знаем? Но мы теперь знаем, какое огромное значение для Земли имел изотоп гелий-3.
Энергия гелия-3, поступившего из газопылевого облака при формировании Земли как планеты, разогрела тело Земли, создав ядро Земли, мантию и преобразовав поверхность Земли, то есть на Земле появились возвышенности, впадины и горы.

Сквозь разломы и трещины земной коры на поверхность изливались лавовые потоки, имеющие температуры расплавленного вещества в тысячи градусов, в которых происходили реакции разрушения атома и создания атомов практически всех элементов существующих ныне.

Огромное значение для появления жизни на Земле явилось то, что расплавленные руды, вступая в реакции с сероводородом атмосферы Земли, освободили атмосферу Земли от этого агрессивного соединения.

И, конечно же, все рудные месторождения Земли, появились только благодаря энергии гелия-3. Человек с благодарностью пользуется этими рудами и минералами.

Хочется порассуждать. А можно ли сейчас, создав условия протерозоя, то есть высокие температуры и давление, получать исскуственно созданные, нужные нам элементы? Ну, например, мечту алхимиков - золото?

Здесь, видимо, уместно ответить вопросом на вопрос: «А разве не получали древние потомки марсиан (смотри вышеуказанный сайт и блог) исскуственным путём золото?» Если бы оно в Египте или в других местах колонизации Земли добывалось так же, как добывают его современные старатели, то разве было бы оно для них по цене, как для нас сейчас медь? Откуда там столько золота? Читаем: «У фараона - золота, как песка», «Конкистадоры потребовали в качестве откупа - засыпать золотом всё помещение до окон».

Можно ли при современных знаниях осуществить мечту алхимиков? Если покумекать, то может что-то и придумаем. Ведь Природа одарила разумного человека полуфабрикатами (алюминий, кремний, магний и др.) и даже показала, как из них можно изготовить множество металлов и минералов. А золото может и само подскажет, как его «выпекать» из кремния или магния.

Ну что ж! Есть направление. Осталось только найти верный путь.


PS
Это обещанное сенсационное сообщение, которое, как и предыдущие, повидимому так же окажется недоступным для широких народных масс. Здесь в ЖЖ, оно находится надёжно спрятанным за семью печатями.

Теория неомобилизма

Любой участок к каменной оболочки Земли – литосферы– постоянно перемещается по горизонтали, хотя и очень медленно, со скоростью не превышающей нескольких десятков сантиметров в год.

Долгое время считалось, что литосфера образовалась при остывании огненно-жидкой плазмы. По этой причине ученые считали, что она как-бы плавает на подстилающем расплавленном веществе. При этом, оказалось, что под земной корой вещество находится в твердом состоянии, вплоть до границы с ядром Земли, а очаги магмы, время от времени изливающейся в вулканических областях, образуются среди твердых пород лишь время от времени. Существует теория (Баррел, 1914) что в мантии существует астеносфера, ᴛ.ᴇ. ʼʼослабленная оболочкаʼʼ разогретых и относительно пластичных горных пород. Полвека спустя эта теория подтвердилась. Астеносфера обнаружила себя как проводник сейсмических волн и электрических токов.

Итак, литосфера плавает на астеносфере; при этом, она поднимается, опускается и скользит в горизонтальном направлении относительно нижней мантии и ядра Земли. Земная кора участвует во всœех движениях как составная часть литосферы.

Каменная оболочка Земли не представляет собой единого целого. Она делится на части, называемые литосферными плитами. Сейчас на земле 7 больших и несколько более мелких плит. Именно на границах литосферных плит происходят землетрясения, так как там накапливаются напряжения, происходят смещения одной плиты относительно другой. Плиты могут расходиться (дивергентность), сходиться (конвергентность), а также двигаться (как бы скользить) горизонтально одна относительно другой (трансформный разлом).

По мере того, как две плиты расходятся, зияние между ними заполняется веществом, вышедшим из глубины, при этом происходит образование новой коры. В другом месте одна плита пододвигается под встречную и затягивается мантией на глубину, где под высоким давлением уплотняется и начинает погружаться, ʼʼтонутьʼʼ в вязкой астеносфере, опускаясь на поверхность нижней мантии. Вместе с литосферой движутся и континœенты, при столкновении двух континœентов (коллизия) происходит нагромождение высочайших гор, к примеру Памир, Альпы, Гималаи.

Месторождения полезных ископаемых образуются только во внешней оболочке Земли – рудосфере. В ней происходит постоянный круговорот веществ. Породы и руды, возникающие на больших глубинах, поднимаются наверх и образуют горные хребты и возвышенности. Далее Солнце, вода и ветер разрушают их и в виде обломков и растворов переносят в моря и озера. Постепенно там накапливаются 1000-метровые толщи песков, глин, солей и других осадочных пород, которые погружаются в глубинные части Земли. Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, завершается цикл круговорота вещества.

Месторождения образуются на любом этапе круговорота вещества. Вначале на больших глубинах при высоких температурах (800 0 С) и давлении (1000 кг/см 2) твердое вещество превращается в магму. Она под давлением устремляется вверх. По пути часть расплава застывает, а часть, вырвавшись наружу, изливается в виде лавы, пепла и застывших обломков (туфов).

По мере остывания магмы сначала выделяются минœералы, которые образуют руды никеля, меди, хрома, титана, алмазов и др.
Размещено на реф.рф
После затвердевания расплава от только что застывшей, но еще горячей массы отделяются газы и вода с растворенными в ней рудными элементами. Горячие растворы проникают по трещинам за пределы рудного тела, и далее кристаллизуются в разнообразные минœералы, образующие месторождения золота͵ платины, желœеза, свинца, цинка и т.д. Эти месторождения обычно залегают в виде жил в трещинах и пустотах твердых горных пород.

Внутри вулканов, на небольших глубинах, из низкотемпературных растворов образуются богатые золото-серебрянные месторождения.

Из застывшей на глубинœе магмы образуются такие породы, как медные и никелœевые руды, хром, титан, платина и др.

Самая большая и разнообразная по составу руд группа месторождений образуется из растворов, циркулирующих по трещинам. Эти растворы возникают при застывании магмы, содержащей много оксидов кремния. Из такой магмы образуются граниты. Как в самих гранитах, так и во вмещающих их породах отлагаются руды серебра, цинка, висмута и мн. др.
Размещено на реф.рф
элементов.

Руды образуются повсœеместно: на суше, в реках, озерах, морях и океанах. Наиболее активны эти процессы в горах и на плоскогорьях в жарком и влажном климате. Горы разрушаются ветром, водой, суточными колебаниями температуры и движущимися ледниками. В результате образуется большая масса обломков, которая перемещается по планете в направлении более низких ее участков. Реки активно переносят большее количество обломков, при этом наиболее прочные, тяжелые и химически инœертные частицы накапливаются в понижениях и излучинах рек.

Свою лепту в разрушение прибрежных скал вносят моря и океаны. В прибрежно-морских участках скапливаются запасы руд циркония, титана, олова и др.
Размещено на реф.рф
В морских галечниках сосредоточены основные запасы сапфиров, аметистов, агатов и мн. др.

В изолированных бассейнах, расположенных в жарких пустынных областях при интенсивном испарении выпадают в осадок различные соли; поваренные, калийные, а также соединœения, из которых добывают магний, калий, йод, бром и мн. др.

Бурная органическая жизнь в воде также участвует в образовании месторождений. Из скелœетов отмирающих организмов накапливаются огромные массы известняка и фосфора, который активно усваивают морские организмы.

Медленно и неумолимо вздымаются горные хребты, рядом с ними крупные участки земной коры погружаются в пучину океана и покрываются обломками, сносимыми речными потоками с разрушающихся горных кряжей. Накопившиеся осадочные толщи в конце концов оказываются на глубинах в несколько десятков километров, где под действием высоких температур (более 500 о С) и давления (более 1000 кг/см 2) полностью преобразуются. Глины превращаются в прочные горные породы – сланцы, легко раскалывающиеся на тонкие пластинки. Из пористых и легких известняков образуются разнообразные по рисунку и расцветке мраморы, обычные каменные угли превращаются в графит. Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, происходит круговорот веществ в земной коре.

Осадочные горные породы (ОГП) образуются при механическом и химическом разрушении магматических пород под действием воды, воздуха и органического вещества.

Осадочные горные породы – породы, существующие в термодинамических условиях, характерных для поверхностной части земной коры, и образующиеся в результате переотложения продуктов выветривания и разрушения различных горных пород, химического и механического выпадения осадка из воды, жизнедеятельности организмов или всех трёх процессов одновременно.

Под воздействием ветра, солнца, воды и из-за перепада температур магматические породы разрушаются. Сыпучие обломки магматических пород образуют рыхлые отложения и из них образуются слои осадочных пород обломочного происхождения. Со временем эти породы уплотняются и образуются сравнительно твёрдые плотные осадочные породы.

Более трёх четвертей площади материков покрыто ОГП, поэтому с ними наиболее часто приходится иметь дело при геологических работах. Кроме того, с ОГП генетически или пространственно связана подавляющая часть месторождений полезных ископаемых. В ОГП хорошо сохранились остатки вымерших организмов, по которым можно проследить историю развития различных уголков Земли. В осадочных породах содержатся окаменелости (фоссилии). Изучая их, можно узнать, какие виды населяли Землю миллионы лет назад. Фоссилии (лат. fossilis — ископаемый) — ископаемые остатки организмов или следы их жизнедеятельности, принадлежащих прежним геологическим эпохам.

Рис. Фоссилии: а) трилобиты (морские членистоногие найденные в кембрийском, ордовикском, силурийском и девонском периодах) и б) окаменевшие растения.

Исходным материалом при формировании ОГП являются минеральные вещества, образовавшиеся за счёт разрушения существовавших ранее минералов и горных пород магматического, метаморфического или осадочного происхождения и перенесённые в виде твёрдых частиц или растворенного вещества. Изучением осадочных горных пород занимается наука «Литология».

В формировании осадочных горных пород участвуют различные геологические факторы: разрушение и переотложение продуктов разрушения ранее существовавших пород, механическое и химическое выпадение осадка из воды, жизнедеятельность организмов. Случается, что в образовании той или иной породы принимает участие сразу несколько факторов. При этом некоторые породы могут формироваться различным путём. Так, известняки, могут быть химического, биогенного или обломочного происхождения.

Примеры осадочных горных пород: гравий, песок, галька, глина, известняк, соль, торф, горючий сланец, каменный и бурый уголь, песчаник, фосфорит и др.

Горные породы не вечны и они изменяются со временем. На схеме показан процесс круговорота горных пород.

Рис. Процесс круговорота горных пород.

По признаку происхождения осадочные породы делят на три группы: обломочные, химические и органические.

Обломочные горные породы образуются в процессах разрушения, переноса и отложения обломков горных пород. Это чаще всего каменистые осыпи, галечники, пески, суглинки, глины и лёссы. Обломочные породы разделяют по крупности:

· грубообломочные (> 2 мм); остроугольные обломки – дресва, щебень, сцементированные глинистыми сланцами, образуют брекчии, а окатанные – гравий, галька – конгломераты);

  • среднеобломочные (от 2 до 0,5 мм) – образуют пески;

· мелкообломочные, или пылеватые – образуют лёссы;

  • тонкообломочные, или глинистые (< 0,001 мм) – при уплотнении превращаются в глинистые сланцы.

Осадочные породы химического происхождения – соли и отложения, образующиеся из насыщенных водных растворов. Они имеют слоистое строение, состоят из галоидных, сернокислых и карбонатных минералов. К ним относятся каменная соль, гипс, карналлит, опоки, мергель, фосфориты, железо-марганцевые конкреции и т.д. (табл. 2.4). Они могут образовываться в смеси с обломочными и органическими отложениями.

Мергель образуется при вымывании из известняков карбоната кальция, содержит глинистые частицы, плотный, светлый.

Железо-марганцевые конкреции образуются из коллоидных растворов и под действием микроорганизмов и создают шариковидные залежи железных руд. Фосфориты образуются в форме шишковидных конкреций неправильной формы, при слиянии которых возникают фосфоритные плиты – залежи фосфоритовых руд серого и буроватого цветов.

Горные породы органического происхождения широко распространены в природе – это останки животных и растений: кораллы, известняки, ракушечники, радиоляриевые, диатомовые и различные черные органические илы, торф, каменные и бурые угли, нефть.

Осадочная толща земной коры формируется под воздействием климата, ледников, стока, почвообразования, жизнедеятельности организмов, и ей присуща зональность: зональные донные илы в Мировом океане и континентальные отложения на суше (ледниковые и водно-ледниковые в полярных областях, торф в тайге, соли в пустыне и т. д.). Осадочные толщи накапливались в течение многих миллионов лет. За это время картина зональности многократно менялась в связи с переменами в положении оси вращения Земли и другими астрономическими причинами. Для каждой конкретной геологической эпохи можно восстановить систему зон с соответствующей ей дифференциацией процессов осадконакопления. Строение современной осадочной оболочки – это результаты перекрытия множества разновременных зональных систем.

На большей части территории земного шара почвообразование идет на осадочных горных породах. В северной части Азии, Европы и Америки обширные пространства заняты породами, отложенными ледниками четвертичного периода (мореной) и продуктами размывания их талыми ледниковыми водами.

Моренные суглинки и супеси. Эти породы отличаются неоднородностью состава: они представляют сочетание глины, песка и валунов различного размера. Супесчаные почвы содержат больше Si02 и меньше других окислов. Окраска большей частью красно-бурая, иногда палевая или светло-бурая; сложение плотное. Более благоприятную среду для растений представляют моренные отложения, содержащие валуны известковых пород.

Покровные глины и суглинки — безвалунные, мелкоземистые породы. Состоят преимущественно из частиц меньше 0,05 мм в диаметре. Окраска буровато-желтая, большей частью обладают мелкой пористостью. Содержат больше элементов питания, чем описанные выше пески.

Лессовидные суглинки и лессы – безвалунные, мелкоземистые, карбонатные, палевые и желто-палевые, мелкопористые породы. Для типичных лессов характерно преобладание частиц диаметром 0,05-0,01 мм. Встречаются также разновидности с преобладанием частиц диаметром меньше 0,01 мм. Содержание углекислого кальция колеблется от 10 до 50%. Верхние слои лессовидных суглинков нередко бывают освобождены от углекислого кальция. В бескарбонатной части преобладают кварц, полевые шпаты, глинистые минералы.

Красноцветная кора выветривания. В странах с тропическим и субтропическим климатом широко распространены мелкоземистые отложения третичного возраста. Они отличаются красноватой окраской, сильно обогащены алюминием и железом и обеднены другими элементами.

Типичный пример: латериты, красноцветная порода богатая железом и алюминием в жарких и влажных тропических областях, образованная в результате выветривания горных пород.

Рис. Латеритные коры выветривания

Коренные породы. На значительных территориях на поверхность выходят морские и континентальные породы дочетвертичного возраста, объединяемые под названием «коренные породы». Названные породы особенно распространены в Поволжье, а также в предгорьях и горных странах. Среди коренных пород широко распространены карбонатные и мергелистые суглинки и глины, известняки, а также песчаные отложения. Следует отметить обогащенность многих песчаных коренных пород элементами питания. Кроме кварца эти пески содержат значительные количества других минералов: слюд, полевых шпатов, некоторых силикатов и т. д. В качестве материнской горной породы они резко отличаются от древнеаллювиальных кварцевых песков. Состав коренных пород очень разнообразен и недостаточно изучен.

Дата публикования: 2015-07-22; Прочитано: 3603 | Нарушение авторского права страницы

studopedia.org — Студопедия.Орг — 2014-2018 год.(0.002 с)…

Полезные ископаемые России

В нашей стране имеются в достаточном количестве практически все виды полезных ископаемых.

К кристаллическому фундаменту древних платформ приурочены железные руды. Велики запасы железной руды в районе Курской магнитной аномалии, где фундамент платформы высоко приподнят и перекрыт осадочным чехлом относительно небольшой мощности. Это позволяет добывать руду в карьерах. Разнообразные руды приурочены и к Балтийскому щиту - железные, медно-никелевые, апатито-нефелиновые (используются для производства алюминия и удобрений) и многие другие. В чехле древней платформы на Восточно-Европейской равнине имеются различные полезные ископаемые осадочного происхождения. Каменный уголь добывают в бассейне Печоры. Между Волгой и Уралом. в Башкирии и Татарии, находятся значительные запасы нефти и газа. Крупные месторождения газа осваиваются в низовье Волги. На севере Прикаспийской низменности, в районе озер Эльтон и Баскунчак, добывают каменную (поваренную) соль. Большие запасы калийных и поваренных солей разрабатываются в Предуралье, в Полесье и в Прикарпатье. Во многих районах Восточно-Европейской равнины - на Среднерусской, Приволжской, Волыно-Подольской возвышенностях добываются известняки, стекольные и строительные пески, мел, гипс и другие минеральные ресурсы.

В пределах Сибирской платформы к кристаллическому фундаменту приурочены разнообразные месторождения рудных полезных ископаемых. С внедрением базальтов связаны крупные месторождения медно-никелевых руд, кобальта и платины. В районе их разработки вырос крупнейший город Заполярья - Норильск. С гранитными внедрениями Алданского щита связаны запасы золота и железной руды, слюды, асбеста и ряда редких металлов. В центральной части платформы по узким разломам фундамента образовались вулканические трубки взрывов. В Якутии в ряде из них ведется промышленная добыча алмазов. В осадочном чехле Сибирской платформы находятся крупные месторождения каменного угля (Якутия). Его добыча резко возросла с постройкой Байкало-Амурской железнодорожной магистрали. На юге платформы располагается Канско-Ачинское месторождение бурых углей. Во впадинах осадочного чехла находятся перспективные месторождения нефти и газа.

На территории Западно-Сибирской плиты обнаружены и разрабатываются полезные ископаемые только осадочного происхождения. Фундамент платформы залегает на глубине более 6 тыс. м и пока не доступен для разработок. В северной части Западно-Сибирской плиты разрабатываются крупнейшие газовые месторождения, а в средней - нефтяные. Отсюда газ и нефть подаются по трубопроводам в ряд районов нашей страны и государств Западной и Восточной Европы.

Наиболее разнообразны по своему происхождению и составу месторождения полезных ископаемых в горах. С древними складчатыми структурами байкальского возраста связаны месторождения полезных ископаемых, близких по своему составу к ископаемым фундамента древних платформ. В разрушенных складках байкальского возраста находятся месторождения золота (Ленские прииски). В Забайкалье значительны запасы железных руд, полиметаллов, медистых песчаников, асбеста.

Каледонские складчатые сооружения сочетают в себе в основном месторождения как метаморфических, так и осадочных полезных ископаемых.

Богаты разнообразными полезными ископаемыми и складчатые сооружения герцинского возраста. На Урале добывают железные и медно-никелевые руды, платину, асбест, драгоценные и полудрагоценные камни. Богатые полиметаллические руды разрабатываются на Алтае. Во впадинах среди складчатых структур герцинского возраста находятся гигантские запасы каменных углей.

В отрогах Кузнецкого Алатау располагается обширный Кузнецкий каменноугольный бассейн.

В областях мезозойской складчатости имеются месторождения золота на Колыме и в отрогах хребта Черского, олова и полиметаллов в горах Сихотэ-Алиня.

В горных сооружениях кайнозойского возраста месторождения полезных ископаемых встречаются реже и они не такие богатые, как в горах с более древними складчатыми структурами. Процессы метаморфизма и, следовательно, оруденения протекали здесь слабее. К тому же эти горы менее разрушены и их древние внутренние слои часто залегают на глубине, пока не доступной для использования. Из всех гор кайнозойского возраста наиболее богат полезными ископаемыми Кавказ. Вследствие интенсивных разломов земной коры и излияний и внедрений магматических пород более интенсивно протекали процессы оруденения. На Кавказе добывают полиметаллы, медные. вольфрамовые, молибденовые и марганцевые руды.

Полезные ископаемые осадочных пород

На поверхности Земли в результате действия различных экзогенных факторов образуются осадки, которые в дальнейшем уплотняются, претерпевают различные физико-химические изменения — диагенез, и превращаются в осадочные горные породы. Осадочные породы тонким чехлом покрывают около 75% поверхности континентов. Многие из них являются полезными ископаемыми, другие — содержат таковые.

Среди осадочных пород выделяют три группы:

Обломочные породы, возникающие в результате механического разрушения каких-либо пород и накопления образовавшихся обломков;

Глинистые породы, являющиеся продуктом преимущественно химического разрушения пород и накопления возникших при этом глинистых минералов;

Химические (хемогенные) и органогенные породы, образовавшиеся в результате химических и биологических процессов.

При описании осадочных горных пород так же, как и магматических, следует обращать внимание на их минеральный состав и строение. Первый является определяющим признаком для химических и органогенных пород, а также глинистых при микроскопическом их изучении. В обломочных породах могут присутствовать обломки любых минералов и горных пород.

Важнейшим признаком, характеризующим строение осадочных пород, является их слоистая текстура. Образование слоистости связано с условиями накопления осадков. Любые перемены этих условий вызывают либо изменение состава отлагающегося материала, либо остановку в его поступлении. В разрезе это приводит к появлению слоев, разделенных поверхностями напластования и часто различающихся составом и строением. Слои представляют собой более или менее плоские тела, горизонтальные размеры которых во много раз превышают их толщину (мощность). Мощность слоев может, достигать десятков метров или не превышать долей сантиметра. Изучение слоистости дает большой материал для познания палеогеографических условий, в которых формировалась изучаемая осадочная толща. Например, в морях на удалении от берега, в условиях относительно спокойного режима движения воды образуется параллельная, первично горизонтальная слоистость, в прибрежно-морских условиях — диагональная, в потоках морских и речных — косая и т.д. Важным текстурным признаком осадочных пород является также пористость, характеризующая степень их проницаемости для воды, нефти, газов, а также устойчивость под нагрузками. Невооруженным глазом видны лишь относительно крупные поры; более мелкие легко обнаружить, проверив интенсивность поглощения породой воды. Например, породы, обладающие тонкой, не видимой глазом пористостью прилипают к языку.

Структура осадочных пород отражает их происхождение — обломочные породы состоят из обломков более древних пород и минералов, т.е. имеют обломочную структуру; глинистые сложены мельчайшими не видимыми вооруженным глазом зернами преимущественно глинистых минералов — пелитовая структура; хемобиогенные обладают либо кристаллической структурой (от ясно видимой до скрытокристаллической), либо аморфной, либо органогенной, выделяемой в тех случаях, когда порода представляет собой скопление скелетных частей организмов или их обломков.

Большинство осадочных пород является продуктом выветривания и размыва материала ранее существовавших пород. Меньшая часть осадков происходит из органического материала, вулканического пепла, метеоритов, минерализованных вод. Различают осадки терригенные (табл. 1.), осадки органического, вулканического, магматического и внеземного происхождения.

Таблица 1. Материал, слагающий осадочные породы

Первичные компоненты

Вторичные компоненты

Обломочные

Выделившиеся химическим путем

Привнесенные

Образовавшиеся в процессе изменения породы

Обломки пород

Кварциты

Кристаллические сланцы, филлиты, глинистые (аспидные) сланцы

Песчаники

Грубые пирокластические породы (вулканические бомбы, обломки)

Осколки стекла, вулканический пепел

Зерна минералов

Халцедон, кремень, яшма

Полевой шпат

Мусковит

Магнетит, ильменит

Роговая обманка, пироксен

Глинистые минералы

Кальцит, другие карбонаты

Опал, халцедон (кварц)

Глауконит

Окислы марганца

Карбонатный материал

Ангидрит

Опал, халцедон

Карбонаты

Гидроокислы железа

Слюдистые минералы

Ангидрит

Глауконит

Полезные ископаемые извлекаемые из осадочных пород

Осадочные породы имеют исключительно важное практическое и теоретическое значение. В этом отношении с ними не могут сравниться никакие другие горные породы.

Осадочные породы самые важные в практическом отношении: это и полезные ископаемые, и основания для сооружений, и почвы.

Человечество добывает из осадочных пород более 90 % полезных ископаемых. Большая часть из них берется только из осадочных пород: нефть, газ, уголь и другие горючие ископаемые, алюминиевые, марганцевые и другие руды, цементное сырье, соли, флюсы для металлургии, пески, глины, удобрения и т. д.

Руды черных и цветных металлов. Основной металл современной техники — железо добывается почти нацело (более 90 %) из седилитов, если учитывать и железистые кварциты докембрия, являющиеся в настоящее вpeмя метаморфическими породами, но сохраняющими свой первоначальный седиментационный вещественный состав. Основными рудами пока остаются молодые мезокайнозойские оолитовые морские и континентальные залежи аллювиального, дельтового и прибрежно-морского типов и коры выветривания тропических стран: Кубы, Южной Америки, Гвинеи и других стран Экваториальной Африки, островов Индийского и Тихого океанов, Австралии. Эти руды обычно чистые, легко доступны для разработки открытым способом, часто готовы для металлургического процесса, и их запасы колоссальны. С ними начинают конкурировать железистые кварциты, или джеспилиты, архея и протерозоя, гигантские, запасы которых имеются на всех материках, но они требуют обогащения. Их разрабатывают также открытым способом, например в Михайловском и Лебединском карьерах КМА, на Украине, в Южной Австралии и других странах. Помимо этих двух основных типов важны сидеритовые руды протерозоя (рифея) Бакала (Башкирия). Другие типы озерно-болотные (на них работали при Петре 1 железорудные заводы Петрозаводска), вулканогенно-осадочные (лимонитовые каскады и др.), сидеритовые конкреции паралических угленосных толщ — второстепенны.

Марганцевые руды на все 100 % добываются из осадочных пород. Основными типами месторождений их являются мелководные морские, приуроченные к спонrолитам, пескам, глинам. Таковы месторождения-гиганты Никополя (Украина), Чиатуры (Западная Грузия), восточного склона Урала (Полуночное, Марсяты и др.), а также Лабы (Северный Кавказ) и Мангышлака. Самое поразительное, что почти все они приурочены к узкому временному интервалу — олигоцену. Вторым типом являются вулканогенно-осадочные руды палеoзоя, главным образом девона: на Урале в Магнитогорском эвгеосинклинальном прогибе, часто в яшмах; в Казахстане — во впадинах Атасуйского района и др. Железомарганцевые конкреции океанов — второстепенные руды на марганец. Этот металл может добываться лишь попутно с кобальтом, никелем, медью.

Хромовые руды, наоборот, добываются в основном из магматических пород, а на долю осадочных приходится всего 7%.

Все другие компоненты черной металлургии — флюсы — понижающие температуру плавления (известняки), кокс (угли коксующиеся), формовочные пески- добываются нaцeло из осадочных пород.

Руды цветных u легких металлов на 100-50 % добываются из осадочных пород. Алюминий нацело выплавляется из бокситов, как и магниевые руды из магнезитов осадочного генезиса. Основным типом месторождений бокситов служат современные или мезокайнозойские коры выветривания латеритного профиля, развивающиеся в тропическом влажном поясе Земли. Другие типы — это переотложенные латеритные коры выветривания ближнего (коллювий, аллювий, карстовые полосы) или несколько более дальнего (прибрежная лагунная и другая затишная зона) разноса. Крупнейшими такими месторождениями являются нижнекаменноугольные Тихвинские, среднедевонские Красная Шапочка, Черемуховское и другие месторождения, составляющие Северо-Уральский бокситовый район (СУБР), Северо-Американские (Apканзасские и др.), Венгерские и др.

Магний добывается в основном из магнезитов и отчасти из доломитов осадочного генезиса. Крупнейшими в России и мире являются рифейские Саткинские месторождения в Башкирии метасоматического, очевидно катагенетического, гeнeзиса по первичным доломитам. Толщина тел магнезитов достигает многих десятков метров, а мощность толщи 400 м.

Титановые руды на 80 % осадочные, россыпные (рутил, ильменит, титаномагнетиты и др.), состоящие из остаточных минералов, мобилизованных из магматических пород.

Медные руды на 72 % осадочные — медистые песчаники, глины, сланцы, известняки, вулканогенно-осадочные породы. Большей частью они связаны с красноцветными аридными формациями девона, перми и другого возраста. Никелевые руды на 76% осадочные главным образом коры выветривания ультраосновных пород, cвинцoвo-цинкoвыe на 50 % вулканогенно-осадочные, гидротермально-осадочные, а оловянные — россыпи касситеритов — на 50 % осадочные.

Руды «малых» и редких элементов на l00-75% осадочные: на 100% цирконо-гафниевые (россыпи цирконов, рутилов и др.), на 80% кобальтовые, на 80% peдко-земельные (монацитовые и друrие россыпные) и на 75 % тантало-ниобиевые, также в значительной мере россыпные.

Я со школы знала в общих чертах, как сформировались запасы осадочных пород. За годы после её окончания мне удалось узнать об этом процессе более подробно. Поделюсь знаниями с вами.

Образование месторождений осадочных полезных ископаемых

Данный тип ископаемых является, по сути, огромным пластом спрессованного, накопленного со временем, осадка. Этот осадочный материал - основа. Образовывается он по-разному, в зависимости от условий (под водой, на суше или в недрах планеты). На суше и в водоёмах - это продукты жизнедеятельности растений и, отчасти, животных. Некоторые породы поддаются разрушительной силе водных потоков, силы тяжести, ледников, перепадов температуры, дробясь на обломки разного размера и, тем самым, становясь материалом. Затем на суше это всё подвергается химическому разложению посредством:

  • природных вод;
  • углекислого газа;
  • свободного кислорода;
  • органических кислот.

Кислород – окисляет, углекислый газ и кислоты – разлагают.


В толще воды газообразные и растворённые вещества путём химических реакций и жизнедеятельности организмов способны переходить в твёрдую фазу, образовывая осадочный материал.

Вулканическая деятельность приносит материал из недр.

Примеры осадочных пород и их месторождения

Место, где массово происходило накопление осадочного материала, называют месторождением.

К числу полезных ископаемых, которые добываются из осадочных пород, относятся: соли, нефть, пески, газ, глины, цементное сырьё, уголь, флюсы для металлургии, алюминиевые, магниевые, марганцевые, титановые, медные, никелевые, кобальтовые, оловянные руды, частично хромовые, свинцово-цинковые.

Месторождения марганцевых руд: Никопольское (Украина), Мангышлак, Полуночное и Марсяты (склоны Урала).


Самыми внушительными скоплениям магниевых руд в мире являются Саткинские месторождения (Россия, Башкирия).

Угольные бассейны: Тунгусский и Кузбасс (Россия), Иллинойсский и Аппалачский (США), Рурский (Германия).

Масштабнейшие месторождения соли: Мёртвое море, Соледар (Украина), Бельжанское (Россия), залив Кара-Богаз-Гол (Туркмения).

После того как животное или растение умирает, за дело принимаются бактерии, разлагающие ткани. Проходит какое-то время и от трупа животного или засохшего растения не остается ровным счетом ничего.

Процесс распада продолжается от нескольких месяцев до нескольких лет. Но бывают случаи, когда погибшие растения и животные попадают в благоприятные условия, тогда твердые ткани - кости, панцири, зубы - сохраняются очень долго.

Почему могут сохраниться кости?

Представляете себе радость палеонтолога, нашедшего в земле зуб, которому 3 миллиона лет! Такая находка называется окаменелостью. Это может быть настоящий сохранившийся зуб, подлинная кость или уцелевший панцирь, на века, законсервированные в земле. Чаще всего находят ископаемые останки древних морских животных, потому что их останки быстро погружаются в илистое дно, а трупы сухопутных животных остаются не погребенными, и поэтому быстро наступает процесс гниения.

Материалы по теме:

Почему вымерли динозавры?

Виды окаменелостей

  • Отпечатки твердых тканей. Могут быть отпечатки твердых тканей в окаменевших осадочных породах, например оттиснутый на камне скелет маленького морского животного.
  • Минеральные копии костей, зубов и панцирей. Еще один вид окаменелостей - окаменелости в полном смысле этого слова - минеральные копии костей, зубов и панцирей.

Что должно произойти что бы окаменелости сохранились?

Для того чтобы земля сотворила окаменелость, позволив нам увидеть, как выглядели допотопные земные твари, необходимо соблюдение некоторых условий, самое важное из которых - останки должны быть защищены от ветра и дождя. Это происходит, когда животное попадает в отложения осадочных пород - песка или гравия. Слой пепла тоже хорошее и надежное покрытие, способствующее образованию окаменелостей.

Публикации по теме

  • Царствование Людовика XV Царствование Людовика XV

    Легендарному французскому королю Людовику XIV приписывается фраза: «Государство — это я!». Вне зависимости от того, произносил её монарх...

  • Бернштейн илья независимый издатель Бернштейн илья независимый издатель

    Как родилась идея создавать академические издания детских книг - причем не то чтобы неочевидных, а как раз тех, которые все и так читали?...