Нервная ткань виды нейронов. Нервная ткань: строение и функции

Нервная ткань человека в организме имеет несколько мест преимущественной локализации. Это мозг (спинной и головной), вегетативные ганглии и вегетативная нервная система (метасимпатический отдел). Головной мозг человека складывается из совокупности нейронов, общее число которых составляет не один миллиард. Сам же нейрон состоит из сома - тела, а также отростков, которые получают информацию от остальных нейронов - дендритов, и аксона, являющегося удлиненной структурой, передающей информацию от тела к дендритам других нервных клеток.

Различные варианты отростков у нейронов

Нервная ткань включает в себя в общей совокупности до триллиона нейронов различной конфигурации. Они могут быть униполярными, мультиполярными или биполярными в зависимости от количества отростков. Униполярные варианты с одним отростком встречаются у человека нечасто. Они обладают только одним отростком - аксоном. Такая единица нервной системы распространена у беспозвоночных животных (тех, которых нельзя отнести к млекопитающим, гадам, птицам и рыбам). При этом стоит учитывать, что по современной классификации к числу беспозвоночных относится до 97% всех видов животных, описанных к настоящему времени, поэтому униполярные нейроны достаточно широко представлены в земной фауне.

Нервная ткань с псевдоуниполярными нейронами (имеют один отросток, но раздвоенный на кончике) встречается у высших позвоночных в черепно-мозговых и спинно-мозговых нервах. Но чаще у позвоночных имеются в наличии биполярные образцы нейронов (есть и аксон, и дендрит) или мультиполярные (аксон один, а дендритов - несколько).

Классификация нервных клеток

Какую еще классификацию имеет нервная ткань? Нейроны в ней могут выполнять разные функции, поэтому среди них выделяют ряд типов, в том числе:

  • Афферентные нервные клетки, они же чувствительные, центростремительные. Эти клетки имеют небольшие размеры (относительно других клеток такого же типа), обладают разветвленным дендритом, связаны с функциями рецепторов сенсорного типа. Они расположены вне центральной нервной системы, имеют один отросток, расположенный в контакте с каким-либо органом, и другой отросток, направленный в спинной мозг. Эти нейроны создают импульсы под воздействием на органы внешней среды или каких-либо изменений в самом теле человека. Особенности нервной ткани, сформированной за счет чувствительных нейронов, таковы, что в зависимости от подвида нейронов (моносенсорные, полисенсорные или бисенсорные) могут получаться реакции, как строго на один раздражитель (моно), так и на несколько (би-, поли-). К примеру, нервные клетки во вторичной зоне на коре больших полушарий (зрительная зона) могут обрабатывать как зрительные, так и звуковые раздражители. Информация идет от центра к периферии и обратно.
  • Двигательные (эфферентные, моторные) нейроны передают информацию от центральной нервной системы к периферии. У них длинный аксон. Нервная ткань образует здесь продолжение аксона в виде периферических нервов, которые подходят к органам, мышцам (гладким и скелетным) и ко всем железам. Скорость прохождения возбуждения через аксон в нейронах такого типа очень велика.
  • Нейроны вставочного типа (ассоциативные) отвечают за передачу информации от чувствительного нейрона на двигательный. Ученые предполагают, что нервная ткань человека состоит из таких нейронов на 97-99%. Их преимущественной дислокацией является серое вещество в центральной нервной системе, и они могут быть тормозными или возбуждающими в зависимости от выполняемых функций. Первые из них имеют возможность не только передать импульс, но и модифицировать его, усиливая эффективность.

Специфические группы клеток

Помимо вышеуказанных классификаций нейроны могут быть фоновоактивными (реакции проходят безо всякого внешнего воздействия), другие же дают импульс только при применении к ним какой-то силы. Отдельную группу нервных клеток составляют нейроны-детекторы, которые могут избирательно реагировать на какие-то сенсорные сигналы, которые имеют поведенческое значение, они нужны для распознавания образов. К примеру, в новой коре имеются клетки, которые особенно чувствительны к данным, описывающим что-то, схожее с лицом человека. Свойства нервной ткани здесь таковы, что нейрон дает сигнал при любом расположении, цвете, размере «лицевого раздражителя». В зрительной же системе есть нейроны, отвечающие за детекцию сложных физических явлений вроде приближения и удаления предметов, циклические движения и др.

Нервная ткань образует в ряде случаев комплексы, очень важные для работы головного мозга, поэтому некоторые нейроны имеют персональные имена в честь открывших их ученых. Это клетки Беца, очень крупные по размерам, обеспечивающие связь двигательного анализатора через корковый конец с моторными ядрами в стволах головного мозга и ряда отделов спинного мозга. Это и тормозные клетки Реншоу, наоборот, небольшие по размерам, помогающие стабилизировать мотонейроны при удержании нагрузки, к примеру, на руку и для поддержания расположения тела человека в пространстве и др.

На каждый нейрон приходится около пяти нейроглий

Строение нервных тканей включает в себя еще один элемент под названием «нейроглия». Эти клетки, которые называют еще глиальными или глиоцитами, по размерам в 3-4 раза меньше самих нейронов. В мозге человека нейроглий в пять раз больше, чем нейронов, что, возможно, обуславливается тем, что нейроглии поддерживают работу нейронов, выполняя различные функции. Свойства нервной ткани данного вида таковы, что у взрослых людей глиоциты являются возобновляющимися, в отличие от нейронов, которые не восстанавливаются. К функциональным «обязанностям» нейроглий относится создание гематоэнцефалического барьера с помощью глиоцитов-астроцитов, которые не дают проникнуть в мозг всем крупным молекулам, патологическим процессам и многим лекарствам. Глиоциты-олегодендроциты - мелкие по размерам, образуют вокруг аксонов у нейронов жироподобный миелиновый футляр, несущий защитную фукнцию. Также нейроглии обеспечивают опорную, трофическую, разграничительную и др. функции.

Другие элементы нервной системы

Некоторые ученые в строение нервных тканей включают и эпендиму - тонкий слой клеток, которые выстилают центральный канал спинного мозга и стенки желудочков мозга. В массе своей эпендима однослойна, состоит из клеток цилиндрической формы, в третьем и четвертом желудочках мозга она имеет несколько слоев. Составляющие эпендиму клетки, эпендимоциты, выполняют секреторную, разграничительную и опорную функции. Их тела вытянуты по форме и имеют на концах «реснички», за счет движения которых производится перемещение спинномозговой жидкости. В третьем желудочке головного мозга находятся особенные эпендимные клетки (танициты), которые, как полагается, передают данные о составе спинномозговой жидкости в специальный отдел гипофиза.

«Бессмертные» клетки с возрастом исчезают

Органы нервной ткани, по широко распространенному определению, включают в себя также стволовые клетки. К ним относят незрелые образования, которые могут становиться клетками разных органов и тканей (потентность), проходить процесс самообновления. По сути, развитие любого многоклеточного организма начинается со стволовой клетки (зиготы), из которой делением и дифференцировкой получаются все остальные виды клеток (у человека их более двухсот двадцати). Зигота представляет собой тотипотентную стволовую клетку, которая дает начало полноценному живому организму за счет трехмерной дифференцировки в единицы экстраэмбриональных и эмбриональных тканей (через 11 дней после оплодотворения у человека). Потомками тотипотентных клеток являются плюрипотетные, которые дают начало элементам зародыша - энтодерме, мезодерме и эктодерме. Из последней как раз и развивается нервная ткань, кожный эпителий, отделы кишечной трубки и органы чувств, поэтому стволовые клетки - это неотъемлемая и важная часть нервной системы.

Стволовых клеток в организме человека очень мало. К примеру, у эмбриона имеется одна такая клетка на 10 тысяч, а у пожилого человека в возрасте около 70 лет - одна на пять-восемь миллионов. Стволовые клетки обладают, помимо вышеуказанной потентности, такими свойствами, как «хоуминг» - способность клетки после введения прибывать в зону повреждения и исправлять сбои, выполняя утраченные функции и сохраняя теломер клетки. В других клетках при делении теломер в части своей утрачивается, а в опухолевых, половых и стволовых есть так называемая телоразмерная активность, в ходе которой концы хромосом автоматически надстраиваются, что дает бесконечную возможность клеточных делений, то есть бессмертие. Стволовые клетки, как своеобразные органы нервной ткани, обладают таким высоким потенциалом за счет избытка информационной рибонуклеиновой кислоты для всех трех тысяч генов, которые участвую в первых этапах развития зародыша.

Основными источниками стволовых клеток выступают эмбрионы, плодный материал после аборта, пуповинная кровь, костный мозг, поэтому с октября 2011 года решением Европейского суда запрещены манипуляции с эмбриональными стволовыми клетками, так как эмбрион признан человеком с момента оплодотворения. В России допущено лечение собственными стволовыми клетками и донорскими для ряда заболеваний.

Вегетативная и соматическая нервная система

Ткани нервной системы пронизывают весь наш организм. От центральной нервной системы (головной, спиной мозг) отходят многочисленные периферические нервы, соединяющие органы тела с ЦНС. Отличием периферической системы от центральной является то, что она не защищена костями и поэтому легче подвергается различным повреждениям. По функциям нервная система подразделяется на вегетативную нервную систему (отвечает за внутреннее состояние человека) и соматическую, которая осуществляет контакты с раздражителями внешней среды, получает сигналы без перехода на подобные волокна, контролируется осознанно.

Вегетативная же дает, скорее, автоматическую, непроизвольную обработку поступающих сигналов. К примеру, симпатический отдел вегетативной системы при надвигающейся опасности повышает давление человека, увеличивает пульс и уровень адреналина. Парасимпатический отдел задействован, когда человек отдыхает, - зрачки у него сужаются, сердцебиение замедляется, кровеносные сосуды расширяются, стимулируется работа половой и пищеварительной систем. Функции нервных тканей энтерального отдела вегетативной нервной системы включают в себя ответственность за все процессы пищеварения. Самым главным органом вегетативной нервной системы является гипотоламус, который связан с эмоциональными реакциями. Стоит помнить, что импульсы в вегетативных нервах могут расходиться на находящиеся рядом волокна такого же типа. Поэтому эмоции способны отчетливо влиять на состояние самых разных органов.

Нервы контролируют мышцы и не только

Нервная и мышечная ткань в теле человека тесно взаимодействуют между собой. Так, основные спинномозговые нервы (отходят от спинного мозга) шейного отдела отвечают за движение мышц у основания шеи (первый нерв), обеспечивают двигательный и сенсорный контроль (2-й и 3-й нерв). Грудобрюшной нерв, продолжающийся от пятого, третьего и второго спинномозговых нервов, управляет диафрагмой, поддерживая процессы самопроизвольного дыхания.

Спинномозговые нервы (с пятого по восьмой) в совокупности с нервом грудинной области создают плечевое нервное сплетение, которое позволяет функционировать рукам и верхней части спины. Строение нервных тканей здесь кажется сложным, однако оно высокоорганизованно и немного различается у разных людей.

В общей сложности у человека 31 пара спинномозговых нервных выходов, восемь из которых находятся в шейном отделе, 12 в грудном, по пять в поясничном и крестцовом отделах и один в копчиковом. Кроме того, выделяют двенадцать черепно-мозговых нервов, идущих от мозгового ствола (отдел мозга, продолжающий спинной мозг). Они отвечают за обоняние, зрение, движение глазного яблока, движение языка, мимику лица и др. Кроме того, десятый нерв здесь отвечает за информацию от груди и живота, а одиннадцатый за работу трапециевидной и кивательной мышц, которые находятся частично вне головы. Из крупных элементов нервной системы стоит упомянуть крестцовое сплетение нервов, поясничное, межреберные нервы, бедренные нервы и симпатический нервный ствол.

Нервная система в животном мире представлена самыми различными образцами

Нервная ткань животных зависит от того, к какому классу относится рассматриваемое живое существо, хотя в основе всего лежат опять же нейроны. В биологической систематике животным считается создание, имеющее в клетках ядро (эукариот), способное к движению и питающееся готовыми органическими соединениями (гетеротрофность). А это значит, что можно рассматривать как нервную систему кита, так и, к примеру, червя. Мозг некоторых из последних, в отличие от человеческого, содержит не более трех сотен нейронов, а остальная система представляет собой комплекс нервов вокруг пищевода. Нервные окончания, выходящие к глазам, в ряде случаев отсутствуют, так как у живущих под землей червей нет зачастую самих глаз.

Вопросы для размышлений

Функции нервных тканей в животном мире ориентированы в основном на то, чтобы их владелец успешно выживал в окружающей среде. При этом природа таит множество загадок. К примеру, зачем пиявке мозг с 32 нервными узлами, каждый из которых сам по себе мини-мозг? Почему у самого маленького в мире паука этот орган занимает до 80% полости всего тела? Встречаются и явные диспропорции в размерах самого животного и частей его нервной системы. Гигантские кальмары располагают главным «органом для размышлений» в виде «пончика» с дыркой посредине и весом около 150 грамм (при общем весе до 1,5 центнеров). И это все может быть предметом размышлений для мозга человека.

Нервная ткань образует нервную систему, которая делится на два отдела: центральный (включает в себя головной и спинной мозг) и периферический (состоит из нервов и периферических нервных узлов). Единую систему нервов также условно подразделяют на соматическую и вегетативную. Часть выполняемых нами действий находится под произвольным контролем. Соматическая нервная система является сознательно управляемой системой. Она передает импульсы, исходящие от органов чувств, мышц, суставов и чувствительных окончаний, в центральную нервную систему, передает сигналы головного мозга в органы чувств, мышцы, суставы и кожу. Вегетативная нервная система практически не контролируется сознанием. Она регулирует работу внутренних органов, кровеносных сосудов и желез.

Строение

Основные элементы нервной ткани - нейроны (нервные клетки). Нейрон состоит из тела и отходящих от него отростков. Большинство нервных клеток имеет несколько коротких и один или пару длинных отростков. Короткие, древовидно ветвящиеся отростки, называются дендритами. Их окончания получают нервный импульс от других нейронов. Длинный отросток нейрона, проводящий нервные импульсы от тела клетки к иннервируемым органам, называется аксоном. Самым крупным у человека является седалищный нерв. Его нервные волокна простираются от поясничного отдела позвоночника до стоп. Некоторые аксоны покрыты многослойным жиросодержащим образованием, называемым миелиновой оболочкой. Эти вещества образуют белое вещество головного и спинного мозга. Волокна, не покрытые миелиновой оболочкой, имеют серый цвет. Нерв сформирован из большого числа нервных волокон, заключенных в общую соединительнотканную оболочку. От спинного мозга отходят волокна, обслуживающие различные части тела. По всей длине спинного мозга расположена 31 пара этих волокон.

Сколько нейронов в организме человека?

Нервная ткань человека образована примерно 25 миллиардами нервных клеток и их отростков. Каждая клетка имеет крупное ядро. Каждый нейрон соединяется с другими нейронами, образуя таким образом гигантскую сеть. Передача импульса от одного нейрона другому происходит в синапсах - зонах контакта между оболочками двух нервных клеток. Передача возбуждения обеспечивается особыми химическими веществами - нейромедиаторами. Передающая клетка синтезирует нейромедиатор и выделяет его в синапс, а приемная клетка улавливает этот химический сигнал и превращает его в электрические импульсы. С возрастом могут образоваться новые синапсы, в то время, как образование новых нейронов невозможно.

Функции

Нервная система осуществляет восприятие, передачу и обработку информации. Нейроны передают информацию, создавая электрический потенциал, либо выделяя особые химические вещества. Нервы реагируют на механическое, химическое, электрическое и термическое раздражение. Для того, чтобы произошло раздражение соответствующего нерва, действие раздражителя должно быть достаточно сильным и продолжительным. В состоянии покоя существует разница в электрическом потенциале на внутренней и внешней сторонах клеточной мембраны. Под действием раздражителей происходит деполяризация - ионы натрия, находящиеся вне клетки, начинают продвигаться внутрь клетки. После окончания периода возбуждения клеточная мембрана вновь становится менее проницаемой для ионов натрия. Импульс распространяется по соматической нервной системе со скоростью 40-100 м в секунду. Между тем, по вегетативной НС возбуждение передается со скоростью примерно 1 метр в секунду.

Нервная система вырабатывает эндогенные морфины, которые оказывают болеутоляющее действие на организм человека. Они, аналогично искусственно синтезированному морфию, действуют в области синапсов. Эти вещества, выполняя функцию нейромедиаторов, блокируют передачу возбуждения нейронам.

Суточная потребность нейронов головного мозга в глюкозе составляет 80 г. Они усваивают около 18% кислорода, поступающего в организм. Даже кратковременное нарушение кислородного обмена ведет к необратимому поражению мозга.

Нервная ткань состоит из нервных клеток (нейронов) и клеток глии . Нервные клетки ответственны за восприятие сигнала, проведение импульса и его реализацию, а глиальные клетки выполняют трофические (питание), опорные функции для нейронов, а также защитные и изолирующие функции для нервных волокон. На всем протяжении своего существования клетки глии сохраняют способность к делению. Нейроны же утрачивают эту способность. Поэтому при заболеваниях, сопровождающихся потерей нервных клеток, глиальные клетки могут замещать нейроны.

Нейроны соединяются между собой посредством синапсов, образуя цепи, или узлы нейронов. Размер и форма нейронов варьируют в широких пределах, однако, основная структура их одинакова.

Строение нейрона

В соответствии с направлением проведения сигнала нервная клетка подразделяется на три сегмента: дендрит, аксон и перикарион (соматическая клетка).

Дендриты представляют собой древовидно ветвящиеся отростки, обладающие специфическими точками контакта (синапсами), которые воспринимают сигналы от других нейронов и передают их в перикарион. Оттуда по осевому цилиндру сигнал передается на воспринимающий орган (например, скелетную мышцу) или на другой нейрон.

Аксон – длинный отросток (до 100 см), окружен особой миелиновой оболочкой Роль миелиновой оболочки заключается в стимуляции передачи сигнала от клетки к клетке.

Перикарион (соматическая клетка ) обладает различной формой и размерами. Наряду с ядром перикарион содержит несколько органелл, а также многочисленные нейротрубочки и нейрофиламенты. Через эти нейротрубочки осуществляется транспорт нерастворимых белков.

По количеству дендритов и типу их ветвления нервные клетки разделяются на несколько типов. Униполярный нейрон обладает одним аксоном. В биполярном нейроне аксон и дендрит отходят от противоположных концов клетки. В ложноуниполярном нейрон образуется из биполярного нейрона путем слияния аксона и дендрита вблизи около тела клетки. В мультиполярном нейроне из клетки выходят многочисленные дендриты вместе с одним аксоном.

Клетки глии (нейроглии)

В соединительной ткани периферической и центральной нервной системы различают следующие типы клеток:
- шванновские клетки (образуют миелиновую оболочку);
- амфициты (образуют оболочку нервных клеток, спинальных ганглий и автономных ганглий);
- астроциты (отчасти выполняют опорную функцию);
- микроглия (обладают способностью к фагоцитозу);
- эпендимоциты (выстилают полости головного и спинного мозга);
- секреторные клетки сосудистого сплетения (вырабатывают жидкость, предохраняющую головной и спинной мозг от механических воздействий).

Нервы

Этот термин используется только для периферической нервной системы. Для головного и спинного мозга применяется название тракт (центральный путь). Нерв состоит из нескольких пучков нервных волокон. В одном нерве могут находиться как чувствительные (афферентные), так и двигательные (эфферентные) волокна. Поэтому такой нерв содержит сотни индивидуальных аксонов, заключенных в миелиновые оболочки, а также дополнительный слой соединительной ткани. В свою очередь, пучки волокон окружены еще одним слоем соединительной ткани. Все оболочки обеспечивают не только механическую защиту нерва, но и служат для питания волокон за счет кровеносных сосудов, находящихся в нерве.

В отличие от аксонов в ЦНС, периферические нервы способны к регенерации после повреждений, даже если нерв перерезан. Это происходит при сшивании концов нерва. После перерезки нерва, в первую очередь, дегенерирует часть аксона, отделенная от тела клетки, а шванновские клетки служат резервом для регенерации аксона. Регенерирующий аксон растет со скоростью 1-2 мм в день в направлении иннервируемого органа (например, мышцы). Для полной реиннервации необходимо несколько месяцев. После ампутации конечности аксоны начинают расти во всех направлениях и образуют пролиферирующую массу, так называемую ампутационную нейрому.

Нервный импульс (потенциал действия)

Способность отвечать возбуждением на внешние сигналы характерна для всех клеток. Быстрая передача сигналов посредством специализированных структур (аксонов) присуща только нервным клеткам. Для нервной системы животных и человека сигнал, или потенциал действия, представляет собой универсальное средство сообщения.

Существенным параметром такой связи является не интенсивность одиночного потенциала действия, а количество полученных, обработанных и переданных нервным волокном сигналов в единицу времени (частота). Таким образом, язык, или код нейрона, выражается частотой сигнала (до 500 импульсов в секунду).

Генерация потенциала действия в нервной клетке зависит от отрицательного потенциала покоя, который характерен почти для всех клеток и выражается разностью электрических потенциалов между наружной клеточной мембраной и содержимым клетки. При возбуждении нервной клетки раздражителями электрической или химической природы происходит кратковременная потеря положительного потенциала на ее мембране, и она заряжается слабо отрицательно. Мембранный потенциал меняется от -60 мВ (потенциал покоя) до +20 мВ. Менее чем за 1 мс исходный потенциал восстанавливается. Поскольку клетка теряет первоначальную поляризацию, этот процесс называется деполяризацией. Возвращение клетки к исходному состоянию носит название реполяризации.

Передача импульса с аксона на другой нейрон происходит через синапс , при участии особых веществ – нейромедиаторов. Они высвобождаются из специальных синаптических пузырьков. Нейромедиаторы диффундируют через синаптическую щель и вызывают деполяризацию постсинаптической мембраны, способствующую дальнейшей передаче импульса.

ОСНОВНЫЕ ВОПРОСЫ ТЕМЫ:

1. Общая морфофункциональная характеристика нервной ткани.

2. Эмбриональный гистогенез. Дифференцировка нейробластов и глиобластов. Понятие о регенерации структурных компонентов нервной ткани.

3. Нейроциты (нейроны): источники развития, классификация, строение, регенерация.

4. Нейроглия. Общая характеристика. Источники развития глиоцитов. Классификация. Макроглия (олигодендроглия, астроглия и эпендимная глия). Микроглия.

5. Нервные волокна: общая характеристика, классификация, строение и функции безмиелиновых и миелиновых нервных волокон, дегенерация и регенерация нервных волокон.

6. Синапсы: классификации, строение химического синапса, строение и механизмы передачи возбуждения.

7. Рефлекторные дуги, их чувствительные, двигательные и ассоциативные звенья.

ОСНОВНЫЕ ТЕОРЕТИЧЕСКИЕ ПОЛОЖЕНИЯ

НЕРВНАЯ ТКАНЬ

Нервная ткань выполняет функции восприятия, проведения и передачи возбуждения, полученного из внешней среды и внутренних органов, а также анализ, сохранение полученной информации, интеграцию органов и систем, взаимодействие организма с внешней средой.

Основные структурные элементы нервной ткани – клетки и нейроглия .

Нейроны

Нейроны состоят из тела (перикариона ) и отростков, среди которых выделяют дендриты и аксон (нейрит). Дендритов может быть множество, аксон всегда один.

Нейрон как любая клетка состоит из 3 компонентов: ядра, цитоплазмы и цитолеммы. Основной объём клетки приходится на отростки.

Ядро занимает центральное положение в перикарионе. В ядре хорошо развито одно или несколько ядрышек.

Плазмолемма принимает участие в рецепции, генерации и проведении нервного импульса.

Цитоплазма нейрона имеет различное строение в перикарионе и в отростках.

В цитоплазме перикариона находятся хорошо развитые органеллы: ЭПС, комплекс Гольджи, митохондрии, лизосомы. Специфичными для нейрона структурами цитоплазмы на светооптическом уровне являются хроматофильное вещество цитоплазмы и нейрофибриллы .

Хроматофильное вещество цитоплазмы (субстанция Ниссля, тигроид, базофильное вещество) проявляется при окрашивании нервных клеток основными красителями (метиленовым синим, толуидиновым синим, гематоксилином и т.д.) в виде зернистости – это скопления цистерн грЭПС. Эти органеллы отсутствуют в аксоне и в аксонном холмике, но имеются в начальных сегментах дендритов. Процесс разрушения или распада глыбок базофильного вещества называется тигролизом и наблюдается при реактивных изменениях нейронов (например, при их повреждении) или при их дегенерации.

Нейрофибриллы – это цитоскелет, состоящий из нейрофиламентов и нейротубул, формирующих каркас нервной клетки. Нейрофиламенты представляют собой промежуточные филаменты диаметром 8-10 нм, образованные фибриллярными белками. Основной функцией этих элементов цитоскелета является опорная – для обеспечения стабильной формы нейрона. Подобную же роль играют тонкие микрофиламенты (поперечный диаметр 6-8 нм), содержащие белки актины. В отличие от микрофиламентов в других тканях и клетках, они не соединяются с микромиозинами, что делает невозможным активные сократительные функции в зрелых нервных клетках.

Нейротубулы по основным принципам своего строения фактически не отличаются от микротрубочек. Они, как и все микротрубочки имеют поперечный диаметр около 24 нм, кольца замыкают 13 молекул глобулярного белка тубулина. В нервной ткани микротрубочки выполняют очень важную, если не сказать уникальную роль. Как и всюду они несут каркасную (опорную) функцию, обеспечивают процессы циклоза. Микротрубки полярны. Именно полярность микротрубки, в которой имеется отрицательно и положительно заряженные концы, позволяет контролировать диффузионно-транспортные потоки в аксоне (так называемый быстрый и медленный аксоток). Их подробное описание приведем ниже.

Кроме этого, в нейронах довольно часто можно видеть липидные включения (зерна липофусцина). Они характерны для старческого возраста и часто появляются при дистрофических процессах. У некоторых нейронов в норме обнаруживаются пигментные включения (например, с меланином), что обуславливает окрашивание нервных центров, содержащих подобные клетки (черная субстанция, голубоватое пятно).

Нейроны в энергетическом отношении крайне зависимы от аэробного фосфорилирования и во взрослом состоянии фактически не способы к анаэробному гликолизу. В связи с этим нервные клетки находятся в выраженной зависимости от поступления кислорода и глюкозы и при нарушении кровотока нервные клетки практически сразу прекращают свою жизнедеятельность. Момент прекращения кровотока в головном мозге означает начало клинической смерти. При мгновенной смерти, при комнатной температуре, и нормальной температуре тела процессы саморазрушения в нейронах обратимы в течение 5-7 минут. Это и является сроком клинической смерти, когда возможно оживление организма. Необратимые изменения в нервной ткани приводят к переходу от клинической смерти к биологической.

В теле нейронов можно видеть также транспортные пузырьки, часть из которых содержит медиаторы и модуляторы. Они окружены мембраной. Их размеры и строение зависят от содержания того или иного вещества.

Дендриты – короткие отростки, нередко сильно ветвятся. Дендриты в начальных сегментах содержат органеллы подобно телу нейрона. Хорошо развит цитоскелет.

Аксон (нейрит) чаще всего длинный, слабо ветвится или не ветвится. В нем отсутствует грЭПС. Микротрубочки и микрофиламенты располагаются упорядочено. В цитоплазме аксона видны митохондрии, транспортные пузырьки. Аксоны в основном миелинизированы и окружены отростками олигодендроцитов в ЦНС, или леммоцитами в периферической нервной системе. Начальный сегмент аксона нередко расширен и имеет название аксонного холмика, где происходит суммация поступающих в нервную клетку сигналов, и если возбуждающие сигналы достаточной интенсивности, то в аксоне формируется потенциал действия и возбуждение направляется вдоль аксона, передаваясь на другие клетки (потенциал действия).

Аксоток (аксоплазматический транспорт веществ). Нервные волокна имеют своеобразный структурный аппарат – микротрубочки, по которым перемещаются вещества от тела клетки на периферию (антероградный аксоток ) и от периферии к центру (ретроградный аксоток ).

Различают быстрый (со скоростью 100-1000 мм/сут.) и медленный (со скоростью 1-10 мм/сут.) аксоток. Быстрый аксоток – одинаков для различных волокон; требует значительной концентрации АТФ; происходит с участием транспортных пузырьков. Он осуществляет транспорт медиаторов и модуляторов. Медленный аксоток – за счет него от центра к периферии распространяются биологически активные вещества, а также компоненты мембран клеток и белков.

Нервный импульс передаётся по мембране нейрона в определённой последовательности: дендрит – перикарион – аксон.

Классификация нейронов

1. По морфологии (по количеству отростков) выделяют:

- мультиполярные нейроны (г) — с множеством отростков (их большинство у человека),

- униполярные нейроны (а) — с одним аксоном,

- биполярные нейроны (б) — с одним аксоном и одним дендритом (сетчатка глаза, спиральный ганглий).

- ложно- (псевдо-) униполярные нейроны (в) – дендрит и аксон отходят от нейрона в виде одного отростка, а затем разделяются (в спинномозговом ганглии). Это вариант биполярных нейронов.

2. По функции (по расположению в рефлекторной дуге) выделяют:

- афферентные (чувствительные ) нейроны (стрелка слева) – воспринимают информацию и передают ее в нервные центры. Типичными чувствительными являются ложноуниполярные и биполярные нейроны спинномозговых и черепно-мозговых узлов;

- ассоциативные (вставочные ) нейроны осуществляют взаимодействие между нейронами, их большинство в ЦНС;

- эфферентные (двигательные ) нейроны (стрелка справа) генерируют нервный импульс и передают возбуждение другим нейронам или клеткам других видов тканей: мышечным, секреторным клеткам.

Синапсы

Синапсы – это специфические контакты нейронов, обеспечивающие передачу возбуждения от одной нервной клетки к другой. В зависимости от способов передачи возбуждения выделяют химические и электрические синапсы.

Эволюционно более древними и примитивными являются электрические синаптические контакты . Они по строению близки к щелевидным контактам (нексусам). Считается, что обмен происходит в обе стороны, но имеются случаи, когда возбуждение передаются в одном направлении. Такие контакты часто встречаются у низших беспозвоночных и хордовых. У млекопитающих электрические контакты имеют большое значение в процессе межнейронных взаимодействий в эмбриональном периоде развития. Подобный вид контактов у взрослых млекопитающих имеет место в ограниченных участках, например их можно видеть в мезэнцефалическом ядре тройничного нерва.

Химические синапсы . Химические синапсы для передачи возбуждения от одной нервной клетки к другой используют специальные вещества – медиаторы , от чего и получили свое название. Кроме медиаторов ими используются и модуляторы . Модуляторы это специальные химические вещества, которые сами возбуждения не вызывают, но могут либо усиливать, либо ослаблять чувствительность к медиаторам (то есть модулировать пороговую чувствительность клетки к возбуждению).

Химический синапс обеспечивает однонаправленную передачу возбуждения. Строение химического синапса:

1) Пресинаптическая зона – пресинаптическое расширение, наиболее часто представляющее собой терминаль аксона, в котором содержатся синаптические пузырьки, элементы цитоскелета (нейротубулы и нейрофиламенты), митохондрии;

2) Синаптическая щель , которая принимает медиаторы из пресинаптической зоны;

3) Постсинаптическая зона – это электронноплотное вещество с рецепторами к медиатору на мембране другого нейрона.

ФИЛЬМ СИНАПСЫ

Классификация синапсов :

1. В зависимости от того, какие структуры двух нейронов взаимодействуют в синапсе, можно выделить:

Аксо-дендритические (пресинаптическая структура аксон, постсинаптическая — дендрит);

Аксо-аксональные;

Аксо-соматические.

2. По функции выделяют:

- возбуждающие синапсы, которые приводят к деполяризации постсинаптической мембраны и активации нервной клетки;

- тормозные синапсы , которые приводят к гиперполяризации мембраны, что снижает пороговую чувствительность нейрона к внешним влияниям.

3. По основному медиатору, содержащемуся в синаптических пузырьках, синапсы делятся на группы:

  1. Холинергические (ацетилхолинергические): возбуждающие и тормозные;
  2. Адренергические (моноаминергические, норадренергические, дофаминергические): в основном, возбуждающие, но есть и тормозные;
  3. Серотонинергические (иногда приписываются к предыдущей группе): возбуждающие;
  4. ГАМК-ергические (медиатор гаммааминомаслянная кислота): тормозные;
  5. Пептидергические (медиаторы – большая группа вешеств, в основном: вазоинтерстициальный полипептид, вазопрессин, вещество Р (медиатор боли), нейропептид Y, окситоцин, бета-эндорфин и энкефалины (противоболевые), динорфин и т.д.).

Синаптические пузырьки отделены от гиалоплазмы одной мембраной. Холинсодержащие пузырьки электронносветлые, диаметром 40-60 мкм. Адренсодержащие – с электронноплотной сердцевиной, светлой каемкой, диаметром 50-80 мкм. Глицинсодержащие и ГАМК-содержащие – имеют овальную форму. Пептидсодержащие – с электронноплотной сердцевиной, светлой каемкой, диаметром 90-120 мкм.

Механизм передачи возбуждения в химическом синапсе: импульс, приходящий по афферентному волокну, вызывает возбуждение в пресинаптической зоне и приводит к выделению медиатора через пресинаптическую мембрану. Медиатор поступает в синаптическую щель. На постсинаптической мембране имеются рецепторы к нейромедиатору (холинорецепторы для медиатора ацетилхолина; адренорецепторы для норадреналина). В последующем связь медиаторов с рецепторами разрывается. Медиатор либо метаболизируется, либо подвергается обратному всасыванию пресинаптическими мембранами, либо захватывается мембранами астроцитов с последующей передачей медиатора к нервным клеткам.

Регенерация нейронов. Для нейронов характерна только внутриклеточная регенерация. Они являются стабильной популяцией клеток и в обычных условиях не делятся. Но имеются исключения. Так, доказана способность к делению у нервных клеток в эпителии обонятельного анализатора, в некоторых ганглиях (скоплениях нейронов вегетативной нервной системы) животных.

Нейроглия

Нейроглия — группа клеток нервной ткани, находящиеся между нейронами, различают микроглию и макроглию .

Макроглия

Макроглия ЦНС подразделяется на следующие клетки: астроциты (волокнистые и протоплазматические), олигодендроциты и эпендимоциты (в том числе и танициты).

Макроглия периферической нервной системы : сателлитоциты и леммоциты (шванновские клетки).

Функции макроглии: защитная, трофическая, секреторная.

Астроциты – звездчатые клетки, многочисленные отростки которых ветвятся и окружают другие структуры мозга. Астроциты есть только в ЦНС и анализаторах – производных нервной трубки.

Виды астроцитов: волокнистые и протоплазматические астроциты.

Терминали отростков обоих типов клеток имеют пуговичные расширения (ножки астроцитов), большинство из которых заканчивается в периваскулярном пространстве, окружая капилляры и образуя периваскулярные глиальные мембраны.

Волокнистые астроциты имеют многочисленные, длинные, тонкие, слабо или совсем не ветвящиеся отростки. В основном присутствуют в белом веществе мозга.

Протоплазматические астроциты отличаются короткими, толстыми и сильно ветвящимися отростками. Имеются преимущественно в сером веществе мозга. Астроциты располагаются между телами нейронов, немиелинизированной и миелинизированной частями нервных отростков, синапсами, кровеносными сосудами, подэпендимными пространствами, изолируя и в то же время структурно связывая их.

Специфическим маркером астроцитов является глиальный фибриллярный кислый белок, из которого образуются промежуточные филаменты.

Астроциты имеют относительно крупные светлые ядра, со слабо развитым ядрышковым аппаратом. Цитоплазма слабо оксифильная, в ней слабо развита аЭПС и грЭПС, комплекс Гольджи. Митохондрий мало, они небольших размеров. Цитоскелет развит умеренно в протоплазматических и хорошо – в волокнистых астроцитах. Между клетками значительное число щелевидных и десмосомоподобных контактов.

В постнатальный период жизни человека астроциты способны к миграции, особенно в зоны повреждения и способны к пролиферации (из них образуются доброкачественные опухоли астроцитомы).

Основные функции астроцитов : участие в гематоэнцефалическом и ликворогематическом барьерах (своими отростками покрывают капилляры, поверхности мозга и участвуют в транспорте веществ от сосудов к нейронам и наоборот), в связи с этим выполняют защитную, трофическую, регуляторную функции; фагоцитоз погибших нейронов, секреция биологически активных веществ: ФРФ, ангиогенные факторы, ЭФР, интерлейкин–I, простагландины.

Олигодендроциты клетки с небольшим числом отростков, способные к образованию миелиновых оболочек вокруг тел и отростков нейронов. Олигодендроциты находятся в сером и белом веществе ЦНС, в периферической нервной системе располагаются разновидности олигодендроцитов – леммоциты (шванновские клетки). Олигодендроциты и их разновидности характеризуются способностью образовывать дупликатуру мембраны – мезаксон , который окружает отросток нейрона, образуя миелиновую или безмиелиновую оболочку.

Ядра олигодендроцитов мелкие, округлые, темноокрашенные, отростки тонкие, не ветвятся или слабо ветвятся. На электроннооптическом уровне в цитополазме хорошо развиты органеллы, особенно синтетический аппарат, слабо развит цитоскелет.

Часть олигодендроцитов концентрируется в непосредственной близости к телам нервных клеток (сателлитные, или мантийные олигодендроциты ). Терминальная зона каждого отростка участвует в формировании сегмента нервного волокна, то есть каждый олигодендроцит обеспечивает окружение сразу нескольких нервных волокон.

Леммоциты (шванновские клетки ) периферической нервной системы характеризуются удлиненными, темноокрашенными ядрами, слабо развитыми митохондриями и синтетическим аппаратом (гранулярная, гладкая ЭПС, пластинчатый комплекс). Леммоциты окружают отростки нейронов в периферической нервной системе, образуя миелиновую или безмиелиновую оболочки. В области формирования корешков спинномозговых и черепно-мозговых нервов леммоциты формируют скопления (глиальные пробки), предотвращая проникновение отростков ассоциативных нейронов ЦНС за ее пределы.

В периферической нервной системе, помимо леммоцитов, имеются другие разновидности олигодендроцитов: сателлитные (мантийные) глиоциты в периферических нервных узлах вокруг тел нейронов, глиоциты нервных окончаний , конкретные морфологические особенности которых рассматриваются при изучении нервных окончаний и анатомии нервных узлов.

Основные функции олигодендроцитов и их разновидностей : образуя миелиновую или безмиелиновую оболочки вокруг нейронов, обеспечивают изолирующей, трофической, опорной, защитной функциями; участвуют в проведении нервного импульса, в регенерации поврежденных нервных клеток, фагоцитозе остатков осевых цилиндров и миелина при нарушении структуры аксона дистальнее места повреждения.

Эпендимоциты , или эпендимная глия – клетки низкопризматической формы, образующие непрерывный пласт, покрывающий полости мозга. Эпендимоциты тесно прилежат друг к другу, формируя плотные, щелевидные и десмосомальные контакты. Апикальная поверхность содержит реснички, которые у большинства клеток затем замещаются микроворсинками. Базальная поверхность имеет базальные впячивания (инвагинации), а также длинные тонкие отростки (от одного до нескольких), которые проникают до периваскулярных пространств микрососудов мозга.

В цитоплазме эпендимоцитов обнаруживаются митохондрии, умеренно развитый синтетический аппарат, хорошо представлен цитоскелет, имеется значительное количество трофических и секреторных включений.

Вариантом эпендимной глии являются танициты . Они выстилают сосудистые сплетения желудочков головного мозга, субкомиссуральный орган задней комиссуры. Активно участвуют в образовании ликвора (спинномозговой жидкости). Характеризуются тем, что базальная часть содержит тонкие длинные отростки.

Основные функции эпендимоцитов : секреторная (синтез ликвора), защитная (обеспечение гемато-ликворного барьера ), опорная, регуляторная (предшественники таницитов направляют миграцию нейробластов в нервной трубке в эмбриональном периоде развития).

Микроглия

Микроглиоциты, или нейральные макрофаги клетки небольших размеров мезенхимного происхождения (производные моноцитов), диффузно распределенные в ЦНС, с многочисленными сильно ветвящимися отростками, способны к миграции. Микроглиоциты – специализированные макрофаги нервной системы. Их ядра характеризуются преобладанием гетерохроматина. В цитоплазме обнаруживается много лизосом, гранул липофусцина; синтетический аппарат развит умеренно.

Функции микроглии: защитная (в том числе иммунная).

Нервные волокна

Нервное волокно состоит из отростка нейрона – осевого цилиндра (дендрита или аксона) и оболочки олигодендроцита или его разновидностей .

Виды нервных волокон:

1) В зависимости от того, как произошло образование оболочки, нервные волокна подразделяются на миелиновые и безмиелиновые.

В периферической нервной системе нервные волокна окружают леммоциты. Один леммоцит связан с одним нервным волокном. В центральной нервной системе отростки нейронов окружают олигодендроциты. Каждый олигодендроцит участвует в формировании нескольких нервных волокон.

Миелинизация волокон осуществляется путем удлинения и «наворачивания» мезаксона вокруг отростка нервной клетки (в периферической нервной системе) или удлинения и вращения отростка олигодендроцита вокруг осевого цилиндра в ЦНС.

Миелиновые (мякотные) волокна в периферической нервной системе имеют в своём составе один отросток нейрона, окружённый удлинённой дупликутурой леммоцита (мезаксон). В миелиновом волокне мезаксон многократно оборачивается вокруг осевого цилиндра, формируя многократные витки мембраны – миелин. Зоны разрыхления миелина (проникновения цитоплазмы леммоцита) называются насечками (Шмидта-Лантермана). Каждый леммоцит образует сегмент волокна, участки границ соседних клеток немиелинизированы и называются перехватами Ранвье , таким образом, по длине волокна миелиновая оболочка имеет прерывистый ход. Миелиновая оболочка является биологическим изолятором. Распространение деполяризации в миелиновом волокне осуществляется скачками от перехвата к перехвату.

Безмиелиновые (безмякотные) волокна в периферической нервной системе состоят из одного или нескольких осевых цилиндров, погружённых в цитолемму окружающего их леммоцита. Мезаксон (дупликатура мембраны) короткий. Передача возбуждения в безмиелиновых волокнах происходит по поверхности нерва через изменение поверхностного заряда.

2) В зависимости от скорости проведения нервного импульса различают следующие типы нервных волокон:

  1. Тип А имеет подгруппы:

- А a — обладают наибольшей скоростью проведения возбуждения — 70-120 м/с (соматические двигательные нервные волокна);

- А b — скорость проведения составляет 40-70 м/с. Это соматические афферентные нервы и некоторые эфферентные соматические нервы;

- А g — скорость проведения составляет 15-40 м/с — афферентные и эфферентные симпатические и парасимпатические нервы;

- А d (дельта) — скорость проведения 5-18 м/с. По этой группе афферентных соматических нервов проводятся первичная (быстрая) боль.

  1. Тип В – скорость проведения от 3 до 14 м/с – преганглионарные симпатические волокна, некоторые парасимпатические волокна, то есть это вегетативные нервы.
  2. Тип С – скорость проведения 0,5-3 м/с: постганглионарные вегетативные волокна (безмиелиновые). Проводят болевые импульсы медленной вторичной боли (от рецепторов пульпы зуба).

Нейрогенез. На 15-17 сутки внутриутробного развития человека под индуцирующим влиянием хорды из первичной эктодермы формируется нервная пластинка (скопление продольно лежащего клеточного материала). С 17 по 21 сутки пластинка инвагинирует и превращается сначала в нервный желобок , а затем в трубку . К 25 суткам эмбриогенеза происходит отщепление нервной трубки от эктодермы и замыкание переднего и заднего отверстий (нейропоров). По бокам от нервного желобка располагаются структуры нервного гребня .

На ранних сроках развития нервная трубка сформирована медулобластами – стволовыми клетками нервной ткани ЦНС. Из нервного гребня образуется ганглиозная пластинка состоящая из ганглиобластов – стволовых клеток нейронов и нейроглии периферической нервной системы. Медулобласты и ганглиобласты интенсивно иммигрируют, делятся и затем дифференцируются.

В ранние сроки внутриутробного развития нервная трубка представляет собой пласт отростчатых клеток, лежащих в виде одного слоя, но в несколько рядов. Изнутри и снаружи они ограничены пограничными мембранами. На внутренней поверхности (прилежащей к полости нервной трубки) медулобласты делятся.

В последующем нервная трубка формирует несколько слоев . Среди них можно выделить:

- Внутренняя пограничная мембрана : отделяет полость нервной трубки от клеток;

- Эпендимный слой (вентрикулярный в области мозговых пузырей) представлен бластными клетками-предшественниками макроглии;

- Субвентрикулярная зона (только в передних мозговых пузырях), где происходит пролиферация нейробластов;

- Мантийный (плащевой) слой , содержащий мигрирующие и дифференцирующиеся нейробласты и глиобласты;

- Маргинальный слой (краевая вуаль) сформирован отростками глиобластов и нейробластов. В ней можно видеть тела отдельных клеток.

- Наружная пограничная мембрана .

Диффероны нервной ткани центральной нервной системы

  1. Дифферон нейрона: медулобласт – нейробласт – молодой нейрон – зрелый нейрон.
    1. Дифферон астроцита: медулобласт – спонгиобласт – астробласт – протоплазматический или волокнистый астроцит.
    2. Диферрон олигодендроцита: медулобласт — спонгиобласт – олигодендробласт – олигодендроцит.
    3. Дифферон эпендимной глии: медулобаст – эпендимобласт – эпендимоцит или таницит.
    4. Дифферон микроглии: стволовая клетка крови – полустволовая клетка крови (КОЕ ГЭММ) – КОЕ ГМ – КОЕ М – монобласт – промоноцит – моноцит – микроглиоцит покоя – активированный микроглиоцит.

Диффероны нервной ткани в периферической нервной системе

1. Дифферон нейрона: ганглиобласт – нейробласт – молодой нейрон – зрелый нейрон.

2.Дифферон леммоцита: ганглиобласт – глиобласт – леммоцит (шванновская клетка).

Механизмы нейрогенеза. В процессе внутриутробного развития нейробласты мигрируют в области анатомических закладок нервных центров. При этом они прекращают делиться. В ЦНС миграция нейробластов контролируется адгезивными межклеточными взаимодействиями (с помощью кадгеринов и интегринов радиальной глии), сигнальными молекулами межклеточного вещества (в том числе фибронектинами и ламининами). После того как нейробласты достигают области своей постоянной локализации, они начинают дифференцироваться и формировать отростки. Направление роста отростков также контролируется упомянутыми адгезивными молекулами (кадгерины, интегрины, сигнальные молекулы межклеточного вещества).

Во внутриутробном развитии и после рождения происходит конкурентное взаимодействие между аналогичными нейронами нервных центров. При этом нервные клетки, не успевшие занять соответствующую зону, либо сформировать контакты, подвергаются апоптозу. В раннем развитии погибает от трети до половины нервных клеток.

В последующем развитии вокруг нервных клеток формируется глиальное окружение и происходит миелинизация нервных волокон. Нервные клетки до полового созревания продолжают формировать отростки и синаптические контакты. Максимального развития нервная ткань достигает к 25-30 годам.

С возрастом наблюдается гибель части нервных клеток и компенсаторная гипертрофия других. В нейронах может накапливаться липофусцин. Области с погибшими телами нервных клеток замещаются глиальными рубцам, образованными скоплением гипертрофированных астроцитов.

Дендриты сильно ветвятся, образуя дендритное дерево, и обычно короче аксона. От дендритов возбуждение направляется к телу нервной клетки. Они формируют постсинаптические структуры, воспринимающие возбуждение. Дендритов много, но может быть один. Аксон присутствует всегда, по одному на каждую нервную клетку. Он не ветвится или слабо ветвится в терминальных областях и заканчивается синаптическим бутоном, передающим возбуждение на другие клетки (пресинаптическая зона). Нейроны передают возбуждение с помощью специализированных контактов (синапсов). Вещество, обеспечивающее передачу возбуждения, называется медиатором . В каждом нейроне обычно обнаруживается один основной медиатор.

Регенерация нервных волокон в периферической нервной системе

После перерезки нервного волокна проксимальная часть аксона подвергается восходящей дегенерации, миелиновая оболочка в области повреждения распадается, перикарион нейрона набухает, ядро смещается к периферии, хроматофильная субстанция распадается. Дистальная часть, связанная с иннервируемым органом, претерпевает нисходящую дегенерацию с полным разрушением аксона, распадом миелиновой оболочки и фагоцитозом детрита макрофагами и глией. Леммоциты сохраняются и митотически делятся, формируя тяжи – ленты Бюнгнера. Через 4-6 недель структура и функция нейрона восстанавливается, от проксимальной части аксона дистально отрастают тонкие веточки, растущие вдоль лент Бюнгнера. А результате регенерации нервного волокна восстанавливается связь с органом-мишенью. При возникновении преграды на пути регенерирующего аксона (например, соединительнотканного рубца), восстановления иннервации не происходит.

С дополнениями из учебно-методического пособия «Общая гистология» (составители: Шумихина Г.В., Васильев Ю.Г., Соловьёв А.А., Кузнецова В.М., Соболевский С.А., Игонина С.В., Титова И.В., Глушкова Т.Г.)

Группа нервных тканей объединяет ткани эктодермального происхождения, которые в совокупности образуют нервную систему и создают условия для реализации ее многочисленных функций. Обладают двумя основными свойствами: возбудимостью и проводимостью.

Нейрон

Структурно-функциональной единицей нервной ткани является нейрон (от др.-греч. νεῦρον - волокно, нерв) - клетка с одним длинным отростком - аксоном, и одним/несколькими короткими - дендритами.

Спешу сообщить, что представление, будто короткий отросток нейрона - дендрит, а длинный - аксон, в корне неверно. С точки зрения физиологии правильнее дать следующие определения: дендрит - отросток нейрона, по которому нервный импульс перемещается к телу нейрона, аксон - отросток нейрона, по которому импульс перемещается от тела нейрона.

Отростки нейронов проводят сгенерированные нервные импульсы и передают их другим нейронам, эффекторам (мышцы, железы), благодаря чему мышцы сокращаются или расслабляются, а секреция желез усиливается или уменьшается.


Миелиновая оболочка

Отростки нейронов покрыты жироподобным веществом - миелиновой оболочкой, которая обеспечивает изолированное проведение нервного импульса по нерву. Если бы не было миелиновой оболочки (вообразите!) нервные импульсы распространялись бы хаотично, и, когда мы хотели сделать движение рукой, двигалась бы нога.

Существует болезнь, при которой собственные антитела уничтожают миелиновую оболочку (случаются и такие сбои в работе организма.) Эта болезнь - рассеянный склероз, по мере прогрессирования приводит к разрушению не только миелиновой оболочки, но и нервов - а значит, происходит атрофия мышц и человек постепенно становится обездвиженным.


Нейроглия

Вы уже убедились, насколько значимы нейроны, их высокая специализация приводит к возникновению особого окружения - нейроглии. Нейроглия - вспомогательная часть нервной системы, которая выполняет ряд важных функций:

  • Опорная - поддерживает нейроны в определенном положении
  • Изолирующая - ограничивает нейроны от соприкосновения с внутренней средой организма
  • Регенераторная - в случае повреждения нервных структур нейроглия способствует регенерации
  • Трофическая - с помощью нейроглии осуществляется питание нейронов: напрямую с кровью нейроны не контактируют

В состав нейроглии входят разные клетки, их в десятки раз больше чем самих нейронов. В периферическом отделе нервной системы миелиновая оболочка, изученная нами, образуется именно из нейроглии - шванновских клеток. Между ними хорошо заметны перехваты Ранвье - участки, лишенные миелиновой оболочки, между двумя смежными шванновскими клетками.


Классификация нейронов

Нейроны функционально подразделяются на чувствительные, двигательные и вставочные.


Чувствительные нейроны также называются афферентные, центростремительные, сенсорные, воспринимающие - они передают возбуждение (нервный импульс) от рецепторов в ЦНС. Рецептором называют концевое окончание чувствительных нервных волокон, воспринимающих раздражитель.

Вставочные нейроны также называются промежуточные, ассоциативные - они обеспечивают связь между чувствительными и двигательными нейронами, передают возбуждение в различные отделы ЦНС.

Двигательные нейроны по-другому называются эфферентные, центробежные, мотонейроны - они передают нервный импульс (возбуждение) из ЦНС на эффектор (рабочий орган). Наиболее простой пример взаимодействия нейронов - коленный рефлекс (однако вставочного нейрона на данной схеме нет). Более подробно рефлекторные дуги и их виды мы изучим в разделе, посвященном нервной системе.


Синапс

На схеме выше вы наверняка заметили новый термин - синапс. Синапсом называют место контакта между двумя нейронами или между нейроном и эффектором (органом-мишенью). В синапсе нервный импульс "преобразуется" в химический: происходит выброс особых веществ - нейромедиаторов (наиболее известный - ацетилхолин) в синаптическую щель.

Разберем строение синапса на схеме. Его составляют пресинаптическая мембрана аксона, рядом с которой расположены везикулы (лат. vesicula - пузырек) с нейромедиатором внутри (ацетилхолином). Если нервный импульс достигает терминали (окончания) аксона, то везикулы начинают сливаться с пресинаптической мембраной: ацетилхолин поступает наружу, в синаптическую щель.


Попав в синаптическую щель, ацетилхолин связывается с рецепторами на постсинаптической мембране, таким образом, возбуждение передается другому нейрону, и он генерирует нервный импульс. Так устроена нервная система: электрический путь передачи сменяется химическим (в синапсе).

Гораздо интереснее изучать любой предмет на примерах, поэтому я постараюсь как можно чаще радовать вас ими;) Не могу утаить историю о яде кураре, который используют индейцы для охоты с древних времен.

Этот яд блокирует ацетилхолиновые рецепторы на постсинаптической мембране, и, как следствие, химическая передача возбуждения с одного нейрона на другой становится невозможна. Это приводит к тому, что нервные импульсы перестают поступать к мышцам организма, в том числе к дыхательным мышцам (межреберным, диафрагме), вследствие чего дыхание останавливается и наступает смерть животного.


Нервы и нервные узлы

Собираясь вместе, аксоны образуют нервные пучки. Нервные пучки объединяются в нервы, покрытые соединительнотканной оболочкой. В случае, если тела нервных клеток концентрируются в одном месте за пределами центральной нервной системы, их скопления называют нервные узлы - или ганглии (от др.-греч. γάγγλιον - узел).

В случае сложных соединений между нервными волокнами говорят о нервных сплетениях. Одно из наиболее известных - плечевое сплетение.


Болезни нервной системы

Неврологические болезни могут развиваться в любой точке нервной системы: от этого будет зависеть клиническая картина. В случае повреждения чувствительного пути пациент перестает чувствовать боль, холод, тепло и другие раздражители в зоне иннервации пораженного нерва, при этом движения сохранены в полном объеме.

Если повреждено двигательное звено, движение в пораженной конечности будет невозможно: возникает паралич, но чувствительность может сохраняться.

Существует тяжелое мышечное заболеванием - миастения (от др.-греч. μῦς - «мышца» и ἀσθένεια - «бессилие, слабость»), при котором собственные антитела разрушают мотонейроны.


Постепенно любые движения мышцами становятся для пациента все труднее, становится тяжело долго говорить, повышается утомляемость. Наблюдается характерный симптом - опущение верхнего века. Болезнь может привести к слабости диафрагмы и дыхательных мышц, вследствие чего дыхание становится невозможным.

© Беллевич Юрий Сергеевич 2018-2020

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к

Публикации по теме