Московский государственный университет печати. §5 Теорема Гаусса Теория гаусса физика

Вычисление напряженности поля системы электрических зарядов с помощью принципа суперпозиции электростатических полей можно значительно упростить, используя выведенную немецким ученым К. Гауссом (1777-1855) теорему, определяющую поток вектора напряженности электрического поля сквозь произвольную замкнутую поверхность.

В соответствии с формулой (79.3) поток вектора напряженности сквозь сферическую поверхность радиуса г, охватывающую точечный заряд Q, находящийся в ее центре (рис. 124), равен

Этот результат справедлив для замкнутой поверхности любой формы. Действительно, если окружить сферу (рис. 124) произвольной замкнутой поверхностью, то каждая линия напряженности, пронизывающая сферу, пройдет и сквозь эту поверхность.

Если замкнутая поверхность произвольной формы охватывает заряд (рис. 125), то при пересечении любой выбранной линии напряженности с поверхностью она то входит внес, то выходит из нее. Нечетное число пересечений при вычислении потока в конечном счете сводится к одному пересечению, так как поток считается положительным, если линии напряженности выходят из поверхности, и отрицательным для линий, входящих в поверхность. Если замкнутая поверхность не охватывает заряда, то поток сквозь нее равен нулю, так как число линий напряженности, входящих в поверхность, равно числу линий напряженности, выходящих из нее.

Рис. 124 Рис. 125

Таким образом, для поверхности любой формы, если она замкнута и заключает в себя точечный заряд Q, поток вектора Е будет равен Q/ε 0 , т. е.

(81.1)

Знак потока совпадает со знаком заряда Q.

Рассмотрим общий случай произвольной поверхности, окружающей n зарядов. В соответствии с принципом суперпозиции (80.2) напряженность Е поля, создаваемого всеми зарядами, равнасумме напряженностей E полей, создаваемых каждым зарядом в отдельности: . Поэтому

Согласно (81.1), каждый из интегралов, стоящий под знаком суммы, равен Qi/ε0. Следовательно,

(81.2)

Формула (81.2) выражаеттеорему Гаусса для электростатического поля в вакууме: поток вектора напряженности электростатического поля в вакууме сквозь произвольную замкнутую поверхность равен алгебраической сумме заключенных внутри этой поверхности зарядов, деленной на ε 0 . Эта теорема выведена математически для векторного поля любой природы русским математиком М. В. Остроградским (1801-1862), а затем независимо от него применительно к электростатическому полю - К. Гауссом.

Поток напряженности электрического поля, проходящий через замкнутую поверхность, пропорционален суммарному электрическому заряду, содержащемуся внутри этой поверхности.

В науке часто бывает, что один и тот же закон можно сформулировать по-разному. По большому счету, от формулировки закона ничего не меняется с точки зрения его действия, однако новая формулировка помогает теоретикам несколько иначе интерпретировать закон и испытать его применительно к новым природным явлениям. Именно такой случай мы и наблюдаем с теоремой Гаусса, которая, по существу, является обобщением закона Кулона , который, в свою очередь, явился обобщением всего, что ученые знали об электростатических зарядах на момент, когда он был сформулирован.

Вообще говоря, в математике, физике и астрономии найдется немного областей, развитию которых не посодействовал замечательный гений Карла Фридриха Гаусса. В 1831 году он вместе со своим молодым коллегой Вильгельмом Вебером (Wilhelm Weber, 1804–1891) занялся изучением электричества и магнетизма и вскоре сформулировал и доказал теорему, названную его именем. Чтобы понять, в чем заключается ее смысл, представьте себе изолированный точечный электрический заряд q . А теперь представьте, что он окружен замкнутой поверхностью. Форма поверхности в теореме не важна - это может быть пусть даже сдутый воздушный шарик. В каждой точке окружающей заряд поверхности, однако, наблюдается электрическое поле, образованное зарядом, а произведение напряженности этого электрического поля на сколь угодно малую единицу площади окружающей заряд поверхности, через которую проходят силовые линии поля, называется потоком напряженности электрического поля , и можно рассчитать поток напряженности, приходящийся на каждый элемент поверхности . Теорема Гаусса как раз и гласит, что суммарный поток напряженности электрического поля, проходящий через окружающую заряд поверхность, пропорционален величине заряда.

Связь между законом Кулона и теоремой Гаусса станет очевидной на простом примере. Предположим, что заряд q окружен сферой радиуса r . На удалении r от заряда напряженность электрического поля, которая определяется силой притяжения или отталкивания единичного заряда, помещенного в соответствующую точку, составит, согласно закону Кулона:

И то же самое значение мы получим для любой точки сферы заданного радиуса. Следовательно, суммарный поток напряженности электрического поля будет равен значению напряженности поля на удалении r от заряда, помноженному на площадь сферы (которая, как известно, равняется 4πr 2). Иными словами, суммарный поток будет равен:

4πr 2 × kq/r 2 = 4πkq

Это и есть теорема Гаусса.

Интересное следствие из нее получается, если применить эту теорему к сплошному металлу. Представьте себе цельнометаллический предмет и воображаемую замкнутую поверхность внутри него. Полный электрический заряд внутри такой поверхности будет нулевым, поскольку внутри окажется равное число положительных и отрицательных зарядов - протонов атомных ядер и электронов соответственно. Следовательно, поток напряженности электрического поля, проходящий через такую замкнутую поверхность, также будет равен нулю. Поскольку это верно для любой замкнутой поверхности внутри металла, это означает, что внутри металла не существует и не может существовать электрического поля.

Это свойство металлов часто используется экспериментаторами и инженерами-связистами для защиты высокочувствительных приборов от наведенных извне электрических помех. Обычно прибор просто окружается защитным медным экраном. Согласно теореме Гаусса, внешние электрические поля просто не в состоянии проникнуть внутрь такой оболочки и создать помехи работе прибора.

Другое интересное следствие теоремы Гаусса заключается в том, что если в дороге вас застала гроза, самое безопасное для вас - не выходить из машины, поскольку там вы окружены цельнометаллическим экраном. Даже если в ваш автомобиль ударит молния, внутри вам ничего не будет угрожать, поскольку весь разряд пройдет по корпусу и уйдет в землю. Резина, скорее всего, сгорит, зато сами вы останетесь в целости и сохранности.

Как было сказано выше, силовые линии условились проводить с такой густотой, чтобы количество линий, пронизывающих единицу поверхности, перпендикулярной к линиям площадки, было бы равно модулю вектора . Тогда по картине линий напряженности можно судить не только о направлении, но и величине вектора в различных точках пространства.

Рассмотрим силовые линии неподвижного положительного точечного заряда. Они представляют собой радиальные прямые, выходящие из заряда и заканчивающиеся на бесконечности. Проведем N таких линий. Тогда на расстоянии r от заряда число силовых линий, пересекающих единицу поверхности сферы радиуса r , будет равно . Эта величина пропорциональна напряженности поля точечного заряда на расстоянии r. Число N всегда можно выбрать таким, чтобы выполнялось равенство

откуда . Поскольку силовые линии непрерывны, то такое же число силовых линий пересекает замкнутую поверхность любой формы, охватывающую заряд q. В зависимости от знака заряда силовые линии либо входят в эту замкнутую поверхность, либо выходят наружу. Если число выходящих линий считать положительным, а входящих – отрицательным, то можно опустить знак модуля и записать:

. (1.4)

Поток вектора напряженности. Поместим в электрическое поле элементарную площадку, имеющую площадь . Площадка должна быть настолько малой, чтобы напряженность электрического поля во всех ее точках можно было считать одинаковой. Проведем нормаль к площадке (рис. 1.17). Направление этой нормали выбирается произвольно. Нормаль составляет угол с вектором . Потоком вектора напряженности электрического поля через выделенную поверхность называется произведение площади поверхности на проекцию вектора напряженности электрического поля на нормаль к площадке:

где – проекция вектора на нормаль к площадке .

Поскольку число силовых линий, пронизывающих единичную площадку, равно модулю вектора напряженности в окрестности выделенной площадки, то поток вектора напряженности через поверхность пропорционален числу силовых линий, пересекающих эту поверхность. Поэтому, в общем случае, наглядно поток вектора напряженности поля через площадку можно интерпретировать как величину, равную числу силовых линий, пронизывающих эту площадку:

. (1.5)

Заметим, что выбор направления нормали условен, ее можно направить и в другую сторону. Следовательно, поток – величина алгебраическая: знак потока зависит не только от конфигурации поля, но и от взаимной ориентации вектора нормали и вектора напряженности. Если эти два вектора образуют острый угол, поток положителен, если тупой – отрицателен. В случае замкнутой поверхности принято нормаль брать наружу области, охватываемой этой поверхностью, то есть выбирать внешнюю нормаль.

Если поле неоднородно и поверхность произвольна, то поток определяется так. Всю поверхность надо разбить на малые элементы площадью , вычислить потоки напряженности через каждый из этих элементов, а потом просуммировать потоки через все элементы:

Таким образом, напряженность поля характеризует электрическое поле в точке пространства. Поток напряженности зависит не от значения напряженности поля в данной точке, а от распределения поля по поверхности той или иной площади.

Силовые линии электрического поля могут начинаться только на положительных зарядах и заканчиваться на отрицательных. Они не могут начинаться или обрываться в пространстве. Поэтому, если внутри некоторого замкнутого объема нет электрического заряда, то полное число линий, входящих в данный объем и выходящих из него, должно равняться нулю. Если из объема выходит больше линий, чем входит в него, то внутри объема находится положительный заряд; если входит линий больше, чем выходит, то внутри должен быть отрицательный заряд. При равенстве полного заряда внутри объема нулю или при отсутствии в нем электрического заряда линии поля пронизывают его насквозь, и полный поток равен нулю.

Эти простые соображения не зависят от того, как электрический заряд распределен внутри объема. Он может находиться в центре объема или вблизи поверхности, ограничивающей объем. В объеме может находиться несколько положительных и отрицательных зарядов, распределенных внутри объема любым способом. Только суммарный заряд определяет полное число входящих или выходящих линий напряженности.

Как видно из (1.4) и (1.5), поток вектора напряженности электрического поля через произвольную замкнутую поверхность, охватывающую заряд q, равен . Если внутри поверхности находится n зарядов, то, согласно принципу суперпозиции полей, полный поток будет складываться из потоков напряженностей полей всех зарядов и будет равен , где под в этом случае подразумевается алгебраическая сумма всех зарядов, охватываемых замкнутой поверхностью.

Теорема Гаусса. Гаусс первым обнаружил тот простой факт, что поток вектора напряженности электрического поля через произвольную замкнутую поверхность должен быть связан с полным зарядом, находящимся внутри этого объема:

Гаусс Карл Фридрих (1777–1855)

Великий немецкий математик, физик и астроном, создатель абсолютной системы единиц в физике. Разработал теорию электростатического потенциала и доказал важнейшую теорему электростатики (теорема Гаусса). Создал теорию построения изображений в сложных оптических системах. Одним из первых пришел к мысли о возможности существования неевклидовой геометрии. Кроме того, Гаусс внес выдающийся вклад практически во все разделы математики.

Последнее соотношение и представляет собой теорему Гаусса для электрического поля:поток вектора напряженности через произвольную замкнутую поверхность пропорционален алгебраической сумме зарядов, расположенных внутри этой поверхности.Коэффициент пропорциональности зависит от выбора системы единиц.

Следует отметить, что теорема Гаусса получается как следствие закона Кулона и принципа суперпозиции. Если бы напряженность электрического поля изменялась бы не обратно пропорционально квадрату расстояния, то теорема оказалась бы несправедливой. Поэтому теорема Гаусса применима к любым полям, в которых строго выполняется закон обратных квадратов и принцип суперпозиции, например, к гравитационному полю. В случае гравитационного поля роль зарядов, создающих поле, играют массы тел. Поток линий гравитационного поля через замкнутую поверхность пропорционален полной массе, заключенной внутри этой поверхности.

Напряженность поля заряженной плоскости. Применим теорему Гаусса для определения напряженности электрического поля бесконечной заряженной плоскости. Если плоскость бесконечна и заряжена равномерно, то есть поверхностная плотность заряда одинакова в любом ее месте, то линии напряженности электрического поля в любой точке перпендикулярны этой плоскости. Чтобы показать это, воспользуемся принципом суперпозиции для вектора напряженности. Выделим два элементарных участка на плоскости, которые можно считать точечными для точки А , в которой необходимо определить напряженность поля. Как видно из рис. 1.18, результирующий вектор напряженности будет направлен перпендикулярно плоскости. Поскольку плоскость можно разбить на бесконечное количество пар таких участков для любой точки наблюдения, то, очевидно, что силовые линии поля заряженной плоскости перпендикулярны к плоскости, и поле является однородным (рис. 1.19). Если бы это было не так, то при перемещении плоскости вдоль самой себя поле в каждой точке пространства менялось, но это противоречит симметрии заряженной системы (плоскость бесконечна). В случае положительно заряженной плоскости силовые линии начинаются на плоскости и заканчиваются на бесконечности, а для отрицательно заряженной плоскости силовые линии начинаются на бесконечности и входят в плоскость.

Рис. 1.18 Рис. 1.19

Для определения напряженности электрического поля бесконечной положительно заряженной плоскости мысленно выделим в пространстве цилиндр, ось которого перпендикулярна заряженной плоскости, а основания параллельны ей, и одно из оснований проходит через интересующую нас точку поля (рис. 1.19). Цилиндр вырезает из заряженной плоскости участок площадью , и такую же площадь имеют основания цилиндра, расположенные по разные стороны от плоскости.

Согласно теореме Гаусса поток вектора напряженности электрического поля через поверхность цилиндра связан с электрическим зарядом внутри цилиндра выражением:

.

Так как линии напряженности пересекают лишь основания цилиндра, поток через боковую поверхность цилиндра равен нулю. Поэтому поток вектора напряженности через цилиндрическую поверхность будет складываться только из потоков через основания цилиндра, следовательно,

Сравнивая два последних выражения для потока вектора напряженности, получим

Напряженность электрического поля между разноименно заряженными пластинами. Если размеры пластин значительно превосходят расстояние между ними, то электрическое поле каждой из пластин можно считать близким к полю бесконечной равномерно заряженной плоскости. Так как линии напряженности электрического поля разноименно заряженных пластин между пластинами направлены в одну сторону (рис. 1.20), то напряженность поля между пластинами равна

.

Во внешнем пространстве линии напряженности электрического поля разноименно заряженных пластин имеют противоположные направления, поэтому вне этих пластин результирующая напряженность электрического поля равна нулю. Полученное для напряженности выражение справедливо для больших заряженных пластин, когда напряженность определяется в точке, расположенной далеко от их краев.

Напряженность электрического поля равномерно заряженной тонкой проволоки бесконечной длины. Найдем зависимость напряженности электрического поля равномерно заряженной тонкой проволоки бесконечной длины от расстояния до оси проволоки, используя теорему Гаусса. Выделим участок проволоки конечной длины . Если линейная плотность заряда на проволоке , то заряд выделенного участка равен .

Произведение напряженности электрического поля E и такой плоской площадки S, во всех точках которой напряженность поля одинакова и перпендикулярная к ней, составляет поток N вектора напряженности через площадку S;

N = ES (6)

Если вектор напряженности не перпендикулярен к площадке, то необходимо определять составляющую вектора напряженности перпендикулярную к площадке, которую называют нормальной составляющей (рис. 1):

N = E n S = (E*cosβ)S

При вычислении потока через произвольную поверхность площадью S в неоднородном поле эту поверхность следует разбить на малые плоские элементы dS в пределах каждого из которых напряженность поля можно считать одинаковой; поток через отдельную элементарную площадку

dN = E n dS

Поток вектора напряженности через произвольную замкнутую поверхность находится суммированием (интегрированием) элементарных потоков:

Единицу измерения потока вектора напряженности найдем из формулы (6):

[N] = = В/м *м 2 = В*м (8)

Рис.1 Нормальная составляющая вектора напряженности электрического поля, Рис.2 электрический заряд внутри сферической поверхности

В качестве примера найдем поток вектора напряженности поля точечного заряда Q, помещенного в центре сферической (шаровой) поверхности радиуса R (рис. 2).
Напряженность поля заряда Q одинакова во всех точках этой поверхности и согласно ()

Так как векторы напряженности перпендикулярны к сферической поверхности, то E n = E и проходящий через поверхность поток вектора напряженности поля

Как видно из (9), полученное для частного случая сферической поверхности выражение потока не зависит ни от формы поверхности, ни от места расположения заряда внутри нее. Поэтому формула (9) справедлива для замкнутой поверхности любой формы и произвольно расположенных внутри нее зарядов, суммарное значение которых равно Q.

Итак, поток вектора напряженности электрического поля сквозь замкнутую поверхность равен отношению сумм зарядов, расположенных внутри этой поверхности, к абсолютной диэлектрической проницаемости среды. Получена соотношение называют теоремой Гаусса.

Наглядно поток изображают электрическими линиями, так чтобы вектор напряженности поля в любой точке был касательным к электрической линии, проведенной через
эту точку. Электрические линия поля неподвижных зарядов начинаются на положительных зарядах и заканчиваются на отрицательных. Число линий, пересекающих данную площадку, выбирают пропорциональным значению потока N через эту площадку. На показан электрические линии точечного заряда + Q 1 .

Электрическое поле неподвижных зарядов называют электростатическим.

Принцип суперпозиции в сочетании с законом Кулона даёт ключ к вычислению электрического поля произвольной системы зарядов, но непосредственное суммирование полей по формуле (4.2) обычно требует сложных вычислений. Впрочем, при наличии той или иной симметрии системы зарядов вычисления существенно упрощаются, если ввести понятие потока электрического поля и использовать теорему Гаусса.

Представления о потоке электрического поля привнесены в электродинамику из гидродинамики. В гидродинамике поток жидкости через трубу, то есть объём жидкости N , проходящий через сечение трубы в единицу времени, равен v ⋅ S , где v — скорость жидкости, а S — площадь сечения трубы. Если скорость жидкости изменяется по сечению, нужно использовать интегральную формулу N = ∫ S v → ⋅ d S → . Действительно, выделим в поле скоростей малую площадку d S , перпендикулярную к вектору скорости (рис. ).

Рис. 1.4: Поток жидкости

Объём жидкости, протекающий через эту площадку за время d t , равен v d S d t . Если площадка наклонена к потоку, то соответствующий объём будет v d S cos θ d t , где θ — угол между вектором скорости v → и нормалью n → к площадке d S . Объём жидкости, протекающий через площадку d S в единицу времени получается делением этой величины на d t . Он равен v d S cos θ d t , т.е. скалярному произведению v → ⋅ d S → вектора скорости v → на вектор элемента площади d S → = n → d S . Единичный вектор n → нормали к площадке d S можно провести в двух прямо противоположных направлениях. одно из них условно принимается за положительное. В этом направлении и проводится нормаль n → . Та сторона площадки, из которой выходит нормаль n → , называется внешней, а та, в которую нормаль n → входит, — внутренней. Вектор элемента площади d S → направлен по внешней нормали n → к поверхности, а по величине равен площади элемента d S = ∣ d S → ∣ . При вычислении объёма протекающей жидкости через площадку S конечных размеров, её надо развить на бесконечно малые площадки d S , а затем вычислить интеграл ∫ S v → ⋅ d S → по всей поверхности S .

Выражения типа ∫ S v → ⋅ d S → встречаются во многих отраслях физики и математики. Они называются потоком вектора v → через поверхность S независимо от природы вектора v → . В электродинамике интеграл

N = ∫ S E → ⋅ d S → (5.1)
называют потоком напряженности электрического поля E → через произвольную поверхность S , хотя с этим понятием не связано никакое реальное течение.

Допустим, что вектор E → представляется геометрической суммой

E → = ∑ j E → j .

Умножив это равенство скалярно на d S → и проинтегрировав, получим

N = ∑ j N j .

где N j — поток вектора E → j через ту же самую поверхность. Таким образом, из принципа суперпозиции напряженности электрического поля следует, что потоки через одну и ту же поверхность складываются алгебраически.

Теорема Гаусса гласит, что поток вектора E → через произвольную замкнутую поверхность равен умноженному на 4 π суммарному заряду Q всех частиц, находящихся внутри этой поверхности:

Доказательство теоремы проведем в три этапа.

1. Начнем с вычисления потока электрического поля одного точечного заряда q (рис. ). В простейшем случае, когда поверхность интегрирования S является сферой, а заряд находится в её центре, справедливость теоремы Гаусса практически очевидна. На поверхности сферы напряженность электрического поля

E → = q r → ∕ r 3

постоянна по величине и всюду направлена по нормали к поверхности, так что поток электрического поля просто равен произведению E = q ∕ r 2 на площадь сферы S = 4 π r 2 . Следовательно, N = 4 π q . Этот результат не зависит от формы поверхности, окружающей заряд. Чтобы доказать это, выделим произвольную площадку поверхности достаточно малого размера с установленным на ней направлением внешней нормали n → . На рис. показан один такой сегмент преувеличенно большого (для наглядности) размера.

Поток вектора E → через эту площадку равен d N = E → ⋅ d S → = E cos θ d S ,

где θ — угол между направлением E → и внешней нормалью n → к площадке d S . Так как E = q ∕ r 2 , а d S cos θ ∕ r 2 по абсолютной величине есть элемент телесного угла d Ω = d S ∣ cos θ ∣ ∕ r 2 , под которым видна площадка d S из точки расположения заряда,

D N = ± q d Ω .

где знаки плюс и минус отвечают знаку cos θ , а именно: следует взять знак плюс, если вектор E → составляет острый угол с направлением внешней нормали n → , и знак минус в противном случае.

2. Теперь рассмотрим конечную поверхность S , охватывающую некоторый выделенный объём V . По отношению к этому объёму всегда можно определить, какое из двух противоположных направлений нормали к любому элементу поверхности S следует считать внешним. Внешняя нормаль направлена из объёма V наружу. Суммируя по сегментам, с точностью до знака имеем N = q Ω , где Ω — телесный угол, под которым видна поверхность S из точки, где находится заряд q . Если поверхность S замкнута, то Ω = 4 π при условии, что заряд q находится внутри S . В противном случае Ω = 0 . Чтобы пояснить последнее утверждение, можно вновь обратиться к рис. .

Очевидно, что потоки через сегменты замкнутой поверхности, опирающиеся на равные телесные углы, но обращенные в противоположные стороны, взаимно сокращаются. Очевидно также, что если заряд находится вне замкнутой поверхности, то любому сегменту, обращенному наружу, найдется соответствующий сегмент, обращенный внутрь.

3. Наконец, воспользовавшись принципом суперпозиции, приходим к итоговой формулировке теоремы Гаусса (). Действительно, поле системы зарядов равно сумме полей каждого заряда в отдельности, но в правую часть теоремы () дают ненулевой вклад только заряды, находящиеся внутри замкнутой поверхности. Этим завершается доказательство.

В макроскопических телах число носителей заряда столь велико, что дискретный ансамбль частиц удобно представить в виде непрерывного распределения, введя понятие плотности заряда. По определению, плотностью заряда ρ называется отношение Δ Q ∕ Δ V в пределе, когда объём Δ V стремится к физически бесконечно малой величине:

где интегрирование в правой части производится по объему V , замкнутому поверхностью S .

Теорема Гаусса даёт одно скалярное уравнение на три компоненты вектора E → , поэтому для расчета электрического поля одной этой теоремы недостаточно. Необходима известная симметрия распределения плотности зарядов, чтобы задача могла быть сведена к одному скалярному уравнению. Теорема Гаусса позволяет найти поле в тех случаях, когда поверхность интегрирования в () удается выбрать так, что напряженность электрического поля E постоянна на всей поверхности. Рассмотрим наиболее поучительные примеры.

▸ Задача 5.1

Найти поле шара, равномерно заряженного по объёму или поверхности.

Решение: Электрическое поле точечного заряда E → = q r → ∕ r 3 стремится к бесконечности при r → 0 . Этот факт показывает противоречивость представления элементарных частиц точечными зарядами. Если же заряд q равномерно распределен по объему шара конечного радиуса a , то электрическое поле не имеет особенностей.

Из симметрии задачи ясно, что электрическое поле E → всюду направлено радиально, а его напряженность E = E (r) зависит только от расстояния r до центра шара. Тогда поток электрического поля через сферу радиуса r просто равен 4 π r 2 E (рис. ).

С другой стороны, заряд внутри той же сферы равен полному заряду шара Q , если r ≥ a . Приравнивая 4 π r 2 E к умноженному на 4 π заряду шара q , получаем: E (r) = q ∕ r 2 .

Таким образом, во внешнем пространстве заряженный шар создает такое поле, как если бы весь заряд был сосредоточен в его центре. Этот результат справедлив при любом сферически симметричном распределении заряда.

Поле внутри шара равно E (r) = Q ∕ r 2 , где Q — заряд внутри серы радиуса r . Если заряд равномерно распределен по объему шара, то Q = q (r ∕ a) 3 . В этом случае

E (r) = q r ∕ a 3 = (4 π ∕ 3) ρ r ,

где ρ = q ∕ (4 π a 3 ∕ 3) — плотность заряда. Внутри шара поле линейно спадает от максимального значения на поверхности шара до нуля в его центре (рис. ).

Функция E (r) при этом всюду конечна и непрерывна.

Если заряд распределен по поверхности шара, то Q = 0 , а поэтому также E = 0 . Это результат также справедлив для случая, когда внутри сферической полости зарядов нет, а внешние заряды распределены сферически симметрично. ▸ Задача 5.2

Найти поле равномерно заряженной бесконечной нити; радиус нити a , заряд на единицу длины ϰ .

▸ Задача 5.3

Найти поле бесконечной прямой нити и бесконечно длинного равномерно заряженного цилиндра.

▸ Задача 5.4

Найти поле бесконечной заряженной плоскости и равномерно заряженного бесконечного плоского слоя.

Решение: Вследствие симметрии задачи поле направлено по нормали к слою и зависит только от расстояния x от плоскости симметрии пластины. Для вычисления поля с помощью теоремы Гаусса удобно выбрать поверхность интегрирования S в виде параллелипипеда, как показано на рис. .

Последний результат получается предельным переходом a → 0 при одновременном увеличении плотности заряда ρ так, чтобы величина σ = ρ a оставалась неизменной. По разные стороны от плоскости напряженность электрического поля одинакова по величине, но противоположна по направлению. Поэтому при переходе через заряженную плоскость поле скачком меняется на величину 4 π σ . Заметим, что пластина может считаться бесконечной, если расстояние от пренебрежимо мало по сравнению с её размерами. На расстояниях очень больших по сравнению с размерами пластины она действует, как точечный заряд, и её поле убывает обратно пропорционально квадрату расстояния.

Публикации по теме