Хром в природе и его промышленное извлечение. Хром и его соединения Элемент после хрома в таблице менделеева

Хром (Cr) — элемент с атомным номером 24 и атомной массой 51,996 побочной подгруппы шестой группы четвёртого периода периодической системы химических элементов Д. И. Менделеева. Хром — твёрдый металл голубовато-белого цвета. Обладает высокой химической стойкостью. При комнатной температуре Cr стоек к воде и к воздуху. Этот элемент является одним из важнейших металлов, используемых в промышленном легировании сталей. Соединения хрома имеют яркую окраску различных цветов, за что, собственно, он и получил свое название. Ведь в переводе с греческого «хром» означает «краска».

Известно 24 изотопа хрома с 42Cr по 66Cr. Стабильные природные изотопы 50Cr (4,31 %), 52Cr (87,76 %), 53Cr (9,55 %) и 54Cr (2,38 %). Из шести искусственных радиоактивных изотопов наиболее важен 51Cr с периодом полураспада 27,8 суток. Он применяется, как изотопный индикатор.

В отличие от металлов древности (золото, серебро, медь, железо, олово и свинец) хром имеет своего «первооткрывателя». В 1766 году в окрестностях Екатеринбурга был найден минерал, который получил название «сибирский красный свинец» — PbCrO4. В 1797 году Л. Н. Вокленом в минерале крокоите — природном хромате свинца, был обнаружен элемент № 24. Примерно в то же время (1798 год) независимо от Воклена хром был открыт немецкими учеными М. Г. Клапротом и Ловицем в образце тяжелого черного минерала (это был хромит FeCr2O4), найденного на Урале. Позднее в 1799 Ф. Тассерт обнаружил новый металл в том же минерале, найденном на юго-востоке Франции. Считается, что именно Тассерту впервые удалось получить относительно чистый металлический хром.

Металлический хром используют для хромирования, а также в качестве одного из важнейших компонентов легированных сталей (в частности нержавеющих). Кроме того, хром нашел применение в ряде других сплавов (кислотоупорных и жаропрочных сталях). Ведь введение этого металла в сталь повышает ее устойчивость против коррозии как в водных средах при обычных температурах, так и в газах при повышенных температурах. Хромистым сталям присуща повышенная твердость. Хром применяют в термохромировании — процесс, при котором защитное действие Cr обусловлено образованием на поверхности стали тонкой, но прочной оксидной пленки, препятствующей взаимодействию металла с окружающей средой.

Широкое применение нашли и соединения хрома, так хромиты успешно используются в огнеупорной промышленности: магнезитохромитовым кирпичом футеруют мартеновские печи и другое металлургическое оборудование.

Хром - один из биогенных элементов, которые постоянно входят в состав тканей растений и животных. Растения содержат хром в листьях, где он присутствует в виде низкомолекулярного комплекса, не связанного с субклеточными структурами. До сих пор ученые не смогли доказать необходимость этого элемента для растений. Однако у животных Cr участвует в обмене липидов, белков (входит в состав фермента трипсина), углеводов (структурный компонент глюкозоустойчивого фактора). Известно, что в биохимических процессах участвует исключительно трехвалентный хром. Как и большинство других важных биогенных элементов, хром проникает в организм животного или человека посредством пищи. Понижение этого микроэлемента в организме приводит к замедлению роста, резкому увеличению уровня холестерина в крови и снижению чувствительности периферийных тканей к инсулину.

В тоже время в чистом виде хром весьма токсичен — металлическая пыль Cr раздражает ткани легких, соединения хрома (III) вызывают дерматиты. Соединения хрома (VI) приводят к разным заболеваниям человека, в том числе и онкологическим.

Биологические свойства

Хром - важный биогенный элемент, непременно входящий в состав тканей растений, животных и человека. Среднее содержание этого элемента в растениях – 0,0005 %, причем практически весь он накапливается в корнях (92-95 %), остальная доля содержится в листьях. Высшие растения не переносят концентрации этого металла выше 3∙10-4 моль/л. У животных содержание хрома составляет от десятитысячных до десятимиллионных долей процента. Зато в планктоне коэффициент накопления хрома поразителен — 10 000-26 000. Во взрослом человеческом организме содержание Cr колеблется от 6 до 12 мг. Причем достаточно точно физиологическая потребность в хроме для человека не установлена. Она во многом зависит от рациона – при употреблении пищи с высоким содержанием сахара, потребность организма в хроме возрастает. Принято считать, что человеку требуется в сутки примерно 20–300 мкг этого элемента. Как и другие биогенные элементы, хром способен накапливаться в тканях организма, особенно в волосах. Именно в них содержание хрома указывает на степень обеспеченности организма этим металлом. К сожалению, с возрастом «запасы» хрома в тканях истощаются, исключением являются легкие.

Хром участвует в обмене липидов, белков (присутствует в составе фермента трипсина), углеводов (является структурным компонентом глюкозоустойчивого фактора). Этот фактор обеспечивает взаимодействие клеточных рецепторов с инсулином, уменьшая, тем самым, потребность в нем организма. Фактора толерантности к глюкозе (GTF) усиливает действие инсулина во всех метаболических процессах с его участием. Кроме того, хром принимает участие в регуляции обмена холестерина и является активатором некоторых ферментов.

Основной источник поступления хрома в организм животных и человека - пища. Ученые установили, что в растительной пище концентрация хрома значительно ниже, чем в животной. Наиболее богаты хромом пивные дрожжи, мясо, печень, бобовые и цельное необработанное зерно. Снижение содержания этого металла в пище и крови приводит к уменьшению скорости роста, увеличению холестерина в крови, снижению чувствительности периферийных тканей к инсулину (диабетоподобное состояние). Кроме того, возрастает риск развития атеросклероза и нарушения высшей нервной деятельности.

Однако уже при концентрациях в доли миллиграмма на кубический метр в атмосфере все соединения хрома оказывают токсическое действие на организм. Отравления хромом и его соединениями часты при их производстве, в машиностроении, металлургии, в текстильной промышленности. Степень ядовитости хрома зависит от химической структуры его соединений - дихроматы токсичнее хроматов, соединения Cr+6 токсичнее соединений Cr+2 и Cr+3. Признаки отравления проявляются ощущением сухости и болью в носовой полости, острым першением в горле, затруднением дыхания, кашлем и подобными признаками. При небольшом избытке паров или пыли хрома признаки отравления проходят вскоре после прекращения работы в цеху. При длительном постоянном контакте с соединениями хрома появляются признаки хронического отравления - слабость, постоянные головные боли, потеря в весе, диспепсия. Начинаются нарушения в работе желудочно-кишечного тракта, поджелудочной железы, печени. Развиваются бронхит, бронхиальная астма, пневмосклероз. Появляются кожные заболевания - дерматиты, экземы. Кроме того, соединения хрома - опасные канцерогены, способные накапливаться в тканях организма, вызывая раковые заболевания.

Профилактикой отравлений являются периодические медицинские осмотры персонала, работающего с хромом и его соединениями; установка вентиляции, средств пылеподавления и пылеулавливания; использование рабочими средств индивидуальной защиты (респираторы, перчатки).

Корень «хром» в своем понятии «цвет», «краска» входит в состав многих слов, используемых в самых разнообразных областях: науке, технике и даже музыке. Так многие названия фотопленок содержат этот корень: «ортохром», «панхром», «изопанхром» и другие. Слово «хромосома» состоит из двух греческих слов: «хромо» и «сома». Дословно это можно перевести, как «окрашенное тело» или «тело, которое окрашивается». Структурный элемент хромосомы, формирующийся в интерфазе ядра клетки в результате удвоения хромосом, называется «хроматида». «Хроматин» - вещество хромасом, находящееся в ядрах растительных и животных клеток, которое интенсивно окрашивается ядерными красителями. «Хроматофоры» - пигментные клетки у животных и человека. В музыке используется понятие «хроматическая гамма». «Хромка» - один из видов русской гармони. В оптике существуют понятия «хроматическая абберация» и «хроматическая поляризация». «Хроматография» - физико-химический метод разделения и анализа смесей. «Хромоскоп» - прибор для получения цветного изображения путем оптического совмещения двух или трех цветоотделенных фотографических изображений, освещаемых через специально подобранные различно окрашенные светофильтры.

Наиболее ядовитым является оксид хрома (VI) CrO3, он относится к I классу опасности. Смертельная доза для человека (перорально) 0,6 г. Этиловый спирт при соприкосновении со свежеприготовленным CrO3 воспламеняется!

Самая распространенная марка нержавеющей стали содержит 18 % Cr, 8 % Ni, около 0,1 % C. Она великолепно противостоит коррозии и окислению, сохраняют прочность при высоких температурах. Именно из такой стали изготовлены листы, использовавшиеся в строительстве скульптурной группы В.И. Мухиной «Рабочий и колхозница».

Феррохром, используемый в металлургической промышленности при производстве хромистых сталей, в конце IXX века был очень низкого качества. Это связано с низким содержанием в нем хрома — всего 7-8 %. Тогда он именовался «тасманским чугуном» в виду того, что исходная железо-хромовая руда ввозилась из Тасмании.

Ранее упоминалось, что хромовые квасцы используются при дублении кож. Благодаря этому появилось понятие «хромовые» сапоги. Кожа, дубленая соединениями хрома приобретает блеск, лоск и прочность.

Во многих лабораториях используют «хромовую смесь» - смесь насыщенного раствора бихромата калия с концентрированной серной кислотой. Она используется в обезжиривании поверхностей стеклянной и стальной лабораторной посуды. Она окисляет жир и удаляет его остатки. Только обращаться с этой смесью необходимо с осторожностью, ведь это смесь сильной кислоты и сильного окислителя!

В наше время древесина по-прежнему используется, как строительный материал, ведь она недорога и проста в обработке. Но у нее много и отрицательных свойств - подверженность пожарам, грибковым заболеваниям, разрушающим ее. Чтобы избежать всех этих неприятностей дерево пропитывают специальными составами, содержащими хроматы и бихроматы плюс хлорид цинка, сульфат меди, арсенат натрия и некоторые другие вещества. Благодаря таким составам древесина увеличивает свою стойкость к грибкам и бактериям, а также к открытому огню.

Особую нишу хром занял в полиграфии. В 1839 году было установлено, что бумага, пропитанная бихроматом натрия, после освещения ярким светом становится вдруг коричневой. Затем выяснилось, что бихроматные покрытия на бумаге после засвечивания не растворяются в воде, а, будучи смоченными, приобретают синеватый оттенок. Этим свойством воспользовались полиграфисты. Нужный рисунок фотографировали на пластинку с коллоидным покрытием, содержащим бихромат. Засвеченные места при промывке не растворялись, а не засвеченные растворялись, и на пластине оставался рисунок, с которого можно было печатать.

История

История открытия элемента № 24 началась в 1761 году, когда в Березовском руднике (восточное подножье Уральских гор) близ Екатеринбурга был найден необычный красный минерал, который при растирании в пыль давал желтую окраску. Находка принадлежала профессору Петербургского университета Иоганну Готтлобу Леману. Спустя пять лет ученый доставил образцы в город Санкт-Петербург, где провел над ними ряд опытов. В частности он обработал необычные кристаллы соляной кислотой, получив при этом белый осадок, в котором обнаружился свинец. Исходя из полученных результатов, Леман назвал минерал сибирским красным свинцом. Такова история обнаружения крокоита (от греческого «krokos» — шафран) - природного хромата свинца PbCrO4.

Заинтересованный данной находкой Петер Симон Паллас - немецкий естествоиспытатель и путешественник организовал и возглавил экспедицию Петербургской Академии наук в сердце России. В 1770 году экспедиция достигла Урала и посетила Березовский рудник, где были взяты образцы изучаемого минерала. Вот как это описывает сам путешественник: «Этот удивительный красный свинцовый минерал не встречается более ни в одном месторождении. При растирании в порошок становится желтым, и может быть использован в художественной миниатюре». Немецкая предприимчивость преодолела все трудности добычи и доставки крокоита в Европу. Несмотря на то, что эти операции занимали не менее двух лет, вскоре экипажи знатных господ Парижа и Лондона ездили раскрашенные мелко истолченным крокоитом. Коллекции минералогических музеев многих университетов старого света обогатились лучшими образцами этого минерала из русских недр. Однако состав загадочного минерала европейские ученые разгадать никак не могли.

Длилось это на протяжении тридцати лет, пока образец сибирского красного свинца не попал в руки профессору химии Парижской минералогической школы Никола Луи Воклену в 1796 году. Проведя анализ крокоита, ученый не обнаружил в нем ничего кроме оксидов железа, свинца и алюминия. В дальнейшем Воклен обработал крокоит раствором поташа (К2CO3) и вслед за осаждением белого осадка карбоната свинца выделил желтый раствор неизвестной соли. Проведя ряд опытов по обработке минерала солями различных металлов, профессор при помощи соляной кислоты выделил раствор «кислоты красного свинца» - окись хрома и воду (хромовая кислота существует только в разбавленных растворах). Выпарив данный раствор, он получил рубиново-красные кристаллы (хромовый ангидрид). Дальнейший нагрев кристаллов в графитовом тигле в присутствии угля дал множество сросшихся серых игольчатых кристаллов - новый до этого времени неизвестный металл. Очередной ряд опытов показал высокую тугоплавкость полученного элемента и его устойчивость к кислотам. Парижская академия наук незамедлительно засвидетельствовала открытие, ученый по настоянию друзей дал имя новому элементу - хром (от греческого «цвет», «окраска») ввиду разнообразия оттенков образуемых им соединений. В дальнейших своих работах Воклен уверенно заявил, что изумрудная окраска некоторых драгоценных камней, а также природных силикатов бериллия и алюминия объясняется примесью в них соединений хрома. Примером может послужить смарагд, который является окрашенным в зеленый цвет берилл, в котором алюминий частично замещен хромом.

Понятно, что Воклен получил не чистый металл, скорее всего его карбиды, что подтверждается игольчатой формой светло-серых кристаллов. Чистый металлический хром позднее был получен Ф. Тассертом, предположительно в 1800 году.

Также, независимо от Воклена, хром обнаружили Клапрот и Ловиц в 1798 году.

Нахождение в природе

В земных недрах хром — довольно распространенный элемент, несмотря на то, что в свободном виде он не встречается. Его кларк (среднее содержание в земной коре) составляет 8,3.10-3 % или 83 г/т. Однако его распределение по породам неравномерно. Этот элемент в основном характерен для мантии Земли, дело в том, что ультраосновные породы (перидотиты), которые, предположительно близки по составу к мантии нашей планеты, наиболее богаты хромом: 2 10-1 % или 2 кг/т. В таких породах Cr образует массивные и вкрапленные руды, с ними связано образование крупнейших месторождений данного элемента. Высоко содержание хрома и в основных породах (базальтах и др.) 2 10-2 % или 200 г/т. Гораздо меньше Cr в кислых породах: 2,5 10-3 %, осадочных (песчаники) - 3,5 10-3 %, глинистые сланцы также содержат хром - 9 10-3 %.

Можно заключить, что хром является типичным литофильным элементом и почти весь заключен в минералах глубокого залегания в недрах Земли.

Различают три основных минерала хрома: магнохромит (Mn, Fe)Cr2O4, хромпикотит (Mg, Fe)(Cr, Al)2O4 и алюмохромит (Fe, Mg)(Cr, Al)2O4. Эти минералы имеют единое название - хромовая шпинель и общую формулу (Mg, Fe)О (Сr, Al, Fе)2O3. По внешнему виду они неразличимы и их неточно называют «хромиты». Состав их изменчив. Содержание важнейших компонентов колеблется (весовые %): Cr2O3 от 10,5 до 62,0; Al2O3 от 4 до 34,0; Fe2O3 от 1,0 до 18,0; FeO от 7,0 до 24,0; MgO от 10,5 до 33,0; SiO2 от 0,4 до 27,0; примеси TiO2 до 2; V2O5 до 0,2; ZnO до 5; MnO до 1. В некоторых хромовых рудах содержится 0,1-0,2 г\т элементов группы платины и до 0,2 г\т золота.

Помимо различных хромитов, хром входит в состав ряда других минералов - хромвезувиана, хромового хлорита, хромтурмалина, хромовой слюды (фуксита), хромового граната (уваровита) и др., которые нередко сопровождают руды, но сами промышленного значения не имеют. Хром - относительно слабый водный мигрант. В экзогенных условиях хром, как и железо, мигрирует в виде взвесей и может осаждаться в глинах. Наиболее подвижной формой являются хроматы.

Практическое значение имеет, пожалуй, только хромит FeCr2O4, относящийся к шпинелям - изоморфным минералам кубической системы с общей формулой МО Ме2О3, где М - ион двухвалентного металла, а Ме - ион трехвалентного металла. Помимо шпинелидов, хром встречается во многих значительно менее распространенных минералах, например, меланохроите 3PbO 2Cr2O3, вокелените 2(Pb,Cu)CrO4(Pb,Cu)3(PO4)2, тарапакаите K2CrO4, дитцеите CaIO3 CaCrO4 и других.

Хромиты обычно встречаются в виде зернистых масс черного цвета, реже - в виде октаэдрических кристаллов, имеют металлический блеск, залегают в виде сплошных массивов.

На конец XX века запасы хрома (выявленные) в почти полусотне стран мира, имеющих залежи этого металла, составляли 1674 млн. т. Лидирующую позицию занимает Южно Африканская Республика – 1050 млн. т, где основной вклад вносит Бушвелдский комплекс (около 1000 млн. т). Второе место по хромовым ресурсам принадлежит Казахстану, где в Актюбинской области (Кемпирсайский массив) добывают руду очень высокого качества. Другие страны также имеют запасы этого элемента. Турция (в Гулемане), Филлипины на острове Лусон, Финляндия (Кеми), Индия (Сукинда) и др.

Наша страна имеет свои разрабатываемые месторождения хрома – на Урале (Донское, Сарановское, Халиловское, Алапаевское и многие другие). Причем в начале XIX века именно уральские месторождения являлись основными источниками хромовых руд. Лишь в 1827 американец Исаак Тисон обнаружил крупное месторождение хромовой руды на границе Мериленда и Пенсильвании, перехватив монополию добычи на многие годы. В 1848 залежи хромита высокого качества были найдены в Турции, неподалеку от Бурсы, причем вскоре (после истощения Пенсильванского месторождения) именно эта страна перехватила роль монополиста. Это продолжалось до 1906 года, пока не были обнаружены богатые залежи хромитов в ЮАР и Индии.

Применение

Общий объем потребления чистого металлического хрома на сегодняшний день составляет примерно 15 миллионов тонн. На долю производства электролитического хрома — самого чистого - приходится 5 миллионов тонн, что составляет третью часть от общего потребления.

Хром широко используется для легирования сталей и сплавов, придавая им корозионостойкость и жаростойкость. На изготовление таких «суперсплавов» расходуется более 40 % получаемого чистого металла. Наиболее известны сплавы сопротивления - нихромы с содержанием Cr 15-20 %, жаропрочные сплавы - 13-60 % Cr, нержавеющие - 18 % Cr и шарикоподшипниковые стали 1 % Cr. Добавка хрома к обычным сталям улучшает их физические свойства и делает металл более восприимчивым к термической обработке.

Металлический хром используется для хромирования - нанесения на поверхность стальных сплавов тонкого слоя хрома с целью повышения коррозионной стойкости этих сплавов. Хромированное покрытие отлично противостоит воздействию влажного атмосферного воздуха, соленого морского воздуха, воды, азотной и большинства органических кислот. Такие покрытия бывают двух назначений: защитные и декоративные. Толщина защитных покрытий составляет порядка 0,1 мм, они наносятся непосредственно на изделие и придают ему повышенную износостойкость. Декоративные покрытия имеют эстетическое значение, наносятся на слой другого металла (меди или никеля), который собственно выполняет защитную функцию. Толщина такого покрытия всего 0,0002–0,0005 мм.

Соединения хрома также активно используются в различных областях.

Основная хромовая руда - хромит FeCr2O4 используется в производстве огнеупоров. Магнезитохромитовые кирпичи химически пассивны и термостойки, они выдерживают резкие многократные изменения температур, поэтому их используют в конструкциях сводов мартеновских печей и рабочем пространстве других металлургических устройств и сооружений.

Твердость кристаллов оксида хрома (III) - Cr2O3 соизмерима с твердостью корунда, что обеспечило его применение в составах шлифовальных и притирочных паст, используемых в машиностроении, ювелирной, оптической и часовой промышленности. Его также применяют в качестве катализатора гидрирования и дегидрирования некоторых органических соединений. Cr2O3 используется в живописи в виде зеленого пигмента и для окраски стекла.

Хромат калия - K2CrO4 применяется при дублении кож, в качестве протравы в текстильной промышленности, в производстве красителей, при отбеливании воска.

Дихромат калия (хромпик) - K2Cr2O7 также используется при дублении кож, протраве при окрашивании тканей, является ингибитором коррозии металлов и сплавов. Используется при изготовлении спичек и в лабораторных целях.

Хлорид хрома (II) CrCl2 - очень сильный восстановитель, легко окисляется даже кислородом воздуха, что используется в газовом анализе для количественного поглощения О2. Кроме того, ограниченно используется при получении хрома электролизом расплавов солей и хроматометрии.

Хромокалиевые квасцы K2SO4.Cr2(SO4)3 24H2O используются в основном в текстильной промышленности - при дублении кожи.

Безводный хлорид хрома CrCl3 применяется для нанесения покрытий хрома на поверхность сталей химическим осаждением из газовой фазы, является составной частью некоторых катализаторов. Гидраты CrCl3 - протрава при крашении тканей.

Из хромата свинца РbCrО4 изготовляют различные красители.

Раствором бихромата натрия очищают и травят поверхность стальной проволоки перед цинкованием, а также осветляют латунь. Из бихромата натрия получают хромовую кислоту, которая используется в качестве электролита при хромировании металлических деталей.

Производство

В природе хром встречается в основном в виде хромистого железняка FeO∙Cr2O3, при его восстановлении углем получается сплав хрома с железом — феррохром, который непосредственно используется в металлургической промышленности при производстве хромистых сталей. Содержание хрома в таком составе доходит до 80 % (по массе).

Восстановление оксида хрома (III) углем предназначено для получения высокоуглеродистого хрома, необходимого для производства специальных сплавов. Процесс проводится в электродуговой печи.

Для получения чистого хрома предварительно получают оксид хрома (III), а затем восстанавливают его алюминотермическим способом. При этом предварительно смесь из порошкового или в виде стружки алюминия (Al) и шихту оксида хрома (Cr2O3) прогревают до температуры 500-600° С. Затем, возбуждают восстановление смесью перекиси бария с порошком алюминия, либо запалом части шихты с последующим добавлением оставшейся части. В этом процессе важно, чтобы образовавшейся тепловой энергии хватило на плавление хрома и его отделения от шлака.

Cr2O3 + 2Al = 2Cr + 2Al2O3

Получаемый таким способом хром содержит некое количество примесей: железа 0,25-0,40 %, серы 0,02 %, углерода 0,015–0,02 %. Содержание чистого вещества составляет 99,1–99,4 %. Такой хром хрупок и легко перемалывается в порошок.

Реальность такого метода была доказана и продемонстрирована еще в 1859 году Фридрихом Вёлером. В промышленных масштабах же алюмотермическое восстановление хрома стало возможно только после того, как стал доступным метод получения дешевого алюминия. Гольдшмидт первым разработал безопасный способ регулирования сильно экзотермического (следовательно - взрывоопасного) процесса восстановления.

При необходимости получения высокочистого хрома в промышленности используют электролитические методы. Электролизу подвергают смеси хромового ангидрида, хромоаммонийных квасцов или сульфата хрома с разбавленной серной кислотой. Оседающий в процессе электролиза на алюминиевых или нержавеющих катодах хром содержит растворенные газы в качестве примесей. Чистоты 99,90–99,995 % удается добиться с помощью высокотемпературной (1500-1700° С) очистки в потоке водорода и вакуумной дегазации. Передовые методики рафинирования электролитического хрома удаляют серу, азот, кислород и водород из «сырого» продукта.

Кроме того, возможно получение металлического Cr электролизом расплавов СrCl3 или CrF3 в смеси с фторидами калия, кальция, натрия при температуре 900° C в среде аргона.

Возможность электролитического способа получения чистого хрома доказал Бунзен в 1854 году, подвергая электролизу водный раствор хлорида хрома.

В промышленности используется и силикотермический способ получения чистого хрома. При этом хром из окиси восстанавливается кремнием:

2Cr2O3 + 3Si + 3CaO = 4Cr + 3CaSiO3

Силикотермически хром выплавляют в дуговых печах. Добавка негашеной извести позволяет перевести тугоплавкий диоксид кремния в легкоплавкий шлак силикат кальция. Чистота силикотермического хрома примерно такая же, как и алюминотермического, однако, естественно, содержание в нем кремния несколько выше, а алюминия несколько ниже.

Еще Cr можно получать восстановлением Cr2O3 водородом при 1500° С, восстановлением безводного CrCl3 водородом, щелочными или щелочноземельными металлами, магнием и цинком.

Для получения хрома пытались применить и другие восстановители - углерод, водород, магний. Однако эти способы не получили широкого распространения.

В процессе Ван Аркеля – Кучмана – Де Бура применяется разложение иодида хрома (III) на нагретой до 1100° С проволоке с осаждением на ней чистого металла.

Физические свойства

Хром — твердый, весьма тяжелый, тугоплавкий, ковкий металл серо-стального цвета. Чистый хром довольно пластичен, кристаллизуется в объемно-центрированной решетке, а = 2,885Å (при температуре 20° С). При температуре около 1830° С велика вероятность преобразования в модификацию с гранецентрированной решеткой, а = 3,69Å. Атомный радиус 1,27 Å; ионные радиусы Cr2+ 0,83Å, Cr3+ 0,64Å, Cr6+ 0,52 Å.

Температура плавления хрома напрямую зависит от его чистоты. Поэтому определение этого показателя для чистого хрома весьма сложная задача - ведь даже небольшое содержание примесей азота или кислорода могут существенно изменить значение температуры плавления. Множество исследователей на протяжении не одного десятилетия занимались этим вопросом и получали далекие друг от друга результаты: от 1513 до 1920° C. Ранее было принято считать, что этот металл плавится при температуре 1890° C, но современные исследования указывают температуру в 1907° С, хром кипит при температуре свыше 2500° C - данные также разнятся: от 2199° C до 2671° С. Плотность хрома меньше, чем у железа; она составляет 7,19 г\см3 (при температуре 200° C).

Хрому свойственны все основные характеристики металлов - он хорошо проводит теплоту, его сопротивление электрическому току очень мало, как и большинство металлов, хром имеет характерный блеск. Кроме того, этот элемент имеет одну очень интересную особенность: дело в том, что при температуре 37° C его поведение не поддается объяснению - происходит резкое изменение многих физических свойств, это изменение имеет скачкообразный характер. Хром, как заболевший человек при температуре 37° C начинает капризничать: внутреннее трение хрома достигает максимума, модуль упругости падает до минимальных значений. Скачет значение электропроводности, постоянно изменяется термоэлектродвижущая сила, коэффициент линейного расширения. Данный феномен ученые пока объяснить не могут.

Удельная теплоемкость хрома 0,461 кДж/(кг.К) или 0,11 кал/(г °С) (при температуре 25°С); коэффициент теплопроводности 67 Вт/(м К) или 0,16 кал/(см сек °С) (при температуре 20 °С). Термический коэффициент линейного расширения 8,24 10-6 (при 20 °С). Хром при температуре 20 °С имеет удельное электросопротивление 0,414 мком м, а его термический коэффициент электросопротивления в интервале 20-600° С составляет 3,01 10-3.

Известно, что хром очень чувствителен к примесям – самые малые доли других элементов (кислород, азот, углерод) способны сделать хром очень хрупким. Получить же хром без этих примесей крайне трудно. По этой причине данный металл в конструкционных целях не используется. Зато в металлургии он активно применяется, как легирующий материал, так как его добавка в сплав делает сталь твердой и износостойкой, ведь хром самый твердый из всех металлов - он подобно алмазу режет стекло! Твердость высокочистого хрома по Бринеллю 7-9 Мн/м2 (70-90 кгс/см2). Хромом легируют пружинные, рессорные, инструментальные, штамповые и шарикоподшипниковые стали. В них (кроме шарикоподшипниковых сталей) хром присутствует вместе с марганцем, молибденом, никелем, ванадием. Добавка хрома к обычным сталям (до 5 % Сr) улучшает их физические свойства и делает металл более восприимчивым к термической обработке.

Хром антиферромагнитен, удельная магнитная восприимчивость 3,6 10-6. Удельное электрическое сопротивление 12,710-8 Ом. Температурный коэффициент линейного расширения хрома 6,210-6. Теплота парообразования этого металла составляет 344,4 кДж/Моль.

Хром устойчив к коррозии на воздухе и в воде.

Химические свойства

Химически хром довольно инертен, это объясняется наличием на его поверхности прочной тонкой пленки оксида. На воздухе Cr не окисляется, даже в присутствии влаги. При нагреве окисление протекает исключительно на поверхности металла. При 1200° C пленка разрушается, и окисление протекает гораздо быстрее. При 2000° C хром сгорает с образованием зелёного оксида хрома (III) Cr2O3, обладающего амфотерными свойствами. Сплавляя Cr2O3 со щелочами, получают хромиты:

Cr2O3 + 2NaOH = 2NaCrO2 + H2O

Непрокаленный оксид хрома (III) легко растворяется в щелочных растворах и в кислотах:

Cr2O3 + 6HCl = 2CrCl3 + 3Н2О

В соединениях хром в основном проявляет степени окисления Cr+2, Cr+3, Cr+6. Наиболее устойчивыми являются Cr+3 и Cr+6. Так же существуют некоторые соединения, где хром имеет степени окисления Cr+1, Cr+4, Cr+5. Соединения хрома весьма разнообразны по цвету: белые, синие, зеленые, красные, фиолетовые, черные и многие другие.

Хром легко реагирует с разбавленными растворами соляной и серной кислот с образованием хлорида и сульфата хрома и выделением водорода:

Cr + 2HCl = CrCl2 + H2

Царская водка и азотная кислота пассивируют хром. Причем пассивированный азотной кислотой хром не растворяется в разбавленных серной и соляной кислотах даже при длительном кипячении в их растворах, но в какой-то момент растворение все-таки происходит, сопровождаемое бурным вспениванием от выделившегося водорода. Этот процесс объясняется тем, что хром из пассивного состояния переходит в активное, в котором металл не защищен защитной пленкой. Причем, если в процессе растворения вновь добавить азотной кислоты, то реакция прекратится, так как хром вновь пассивируется.

При обычных условиях хром взаимодействует с фтором, образуя CrF3. При температурах выше 600° C происходит взаимодействие с водяными парами, результатом такого взаимодействия является оксид хрома (III) Сr2О3:

4Cr + 3O2 = 2Cr2O3

Cr2O3, представляет собой зеленые микрокристаллы с плотностью 5220 кг/м3 и высокой температурой плавления (2437° С). Оксид хрома (III) проявляет амфотерные свойства, но весьма инертен, его трудно растворить в водных кислотах и щелочах. Оксид хрома(III) довольно токсичен. Попадая на кожу, он способен вызывать экзему и другие кожные заболевания. Поэтому, при работе с оксидом хрома (III) обязательно необходимо использовать средства индивидуальной защиты.

Помимо окиси, известны другие соединения с кислородом: CrO, CrO3, получаемые косвенным путем. Наибольшую опасность представляет вдыхаемый аэрозоль оксида, вызывающий тяжелые заболевания верхних дыхательных путей и легких.

Хром образует большое число солей с кислородосодержащими компонентами.

ОПРЕДЕЛЕНИЕ

Хром - двадцать четвертый элемент Периодической таблицы. Обозначение - Cr от латинского «chromium». Расположен в четвертом периоде, VIB группе. Относится к металлам. Заряд ядра равен 24.

Хром содержится в земной коре в количестве 0,02% (масс.). В природе он встречается главным образом в виде хромистого железняка FeO×Cr 2 O 3 .

Хром представляет собой твердый блестящий металл (рис. 1), плавящийся при 1890 o С; плотность его 7,19 г/см 3 . При комнатной температуре хром стоек и к воде, и к воздуху. Разбавленные серная и соляная кислоты растворяют хром с выделением водорода. В холодной концентрированной азотной кислоте хром нерастворим и после обработки ею становится пассивным.

Рис. 1. Хром. Внешний вид.

Атомная и молекулярная масса хрома

ОПРЕДЕЛЕНИЕ

Относительной молекулярная масса вещества (M r) - это число, показывающее, во сколько раз масса данной молекулы больше 1/12 массы атома углерода, а относительная атомная масса элемента (A r) — во сколько раз средняя масса атомов химического элемента больше 1/12 массы атома углерода.

Поскольку в свободном состоянии хром существует в виде одноатомных молекул Cr, значения его атомной и молекулярной масс совпадают. Они равны 51,9962.

Изотопы хрома

Известно, что в природе хром может находиться в виде четырех стабильных изотопов 50 Cr, 52 Cr, 53 Cr и 54 Cr. Их массовые числа равны 50, 52, 53 и 54 соответственно. Ядро атома изотопа хрома 50 Cr содержит двадцать четыре протона и двадцать шесть нейтронов, а остальные изотопы отличаются от него только числом нейтронов.

Существуют искусственные изотопы хрома с массовыми числами от 42-х до 67-ми, среди которых наиболее стабильным является 59 Cr с периодом полураспада равным 42,3 минуты, а также один ядерный изотоп.

Ионы хрома

На внешнем энергетическом уровне атома хрома имеется шесть электронов, которые являются валентными:

1s 2 2s 2 2p 6 3s 2 3p 6 3d 5 4s 1 .

В результате химического взаимодействия хром отдает свои валентные электроны, т.е. является их донором, и превращается в положительно заряженный ион:

Cr 0 -2e → Cr 2+ ;

Cr 0 -3e → Cr 3+ ;

Cr 0 -6e → Cr 6+ .

Молекула и атом хрома

В свободном состоянии хром существует в виде одноатомных молекул Cr. Приведем некоторые свойства, характеризующие атом и молекулу хрома:

Сплавы хрома

Металлический хром используется для хромирования, а также в качестве одного из важнейших компонентов легированных сталей. Введение хрома в сталь повышает её устойчивость против коррозии как в водных средах при обычных температурах, так и в газах при повышенных температурах. Кроме того, хромистые стали обладают повышенной твердостью. Хром входит в состав нержавеющих кислотоупорных, жаропрочных сталей.

Примеры решения задач

ПРИМЕР 1

ПРИМЕР 2

Задание Оксид хрома (VI) массой 2 г растворили в воде массой 500 г. Рассчитайте массовую долю хромовой кислоты H 2 CrO 4 в полученном растворе.
Решение Запишем уравнение реакции получения хромовой кислоты из оксида хрома (VI):

CrO 3 + H 2 O = H 2 CrO 4 .

Найдем массу раствора:

m solution = m(CrO 3) + m (H 2 O) = 2 + 500 = 502 г.

n (CrO 3) = m (CrO 3) / M (CrO 3);

n (CrO 3) = 2 / 100 = 0,02 моль.

Согласно уравнению реакции n(CrO 3) :n(H 2 CrO 4) = 1:1, значит,

n(CrO 3) = n(H 2 CrO 4) = 0,02 моль.

Тогда масса хромовой кислоты будет равна (молярная масса - 118 г/моль):

m (H 2 CrO 4) = n (H 2 CrO 4) × M (H 2 CrO 4);

m (H 2 CrO 4) = 0,02 × 118 = 2,36 г.

Массовая доля хромовой кислоты в растворе составляет:

ω = m solute / m solution × 100%;

ω (H 2 CrO 4)=m solute (H 2 CrO 4)/ m solution × 100%;

ω (H 2 CrO 4)= 2,36 / 502 × 100% = 0,47 %.

Ответ Массовая доля хромовой кислоты равна 0,47 %.

Открытие хрома относится к периоду бурного развития химико-аналитических исследований солей и минералов. В России химики проявляли особый интерес к анализу минералов, найденных в Сибири и почти неизвестных в Западной Европе. Одним из таких минералов была сибирская красная свинцовая руда (крокоит), описанная еще Ломоносовым. Минерал исследовался, но ничего, кроме окислов свинца, железа и алюминия в нем не было найдено. Однако в 1797 году Вокелен, прокипятив тонко измельченный образец минерала с поташом и осадив карбонат свинца, получил раствор, окрашенный в оранжево – красный цвет. Из этого раствора он выкристаллизовал рубиново-красную соль, из которой выделили окисел и свободный металл, отличный от всех известных металлов. Вокелен назвал его Хром (Chrome ) от греческого слова - окраска, цвет; правда здесь имелось в виду свойство не металла, а его ярко окрашенных солей .

Нахождение в природе.

Важнейшей рудой хрома, имеющей практическое значение, является хромит, приблизительный состав которого отвечает формуле FeCrO 4.

Он встречается в Малой Азии, на Урале, в Северной Америке, на юге Африки. Техническое значение имеет также вышеназванный минерал крокоит – PbCrO 4 . В природе встречаются также оксид хрома (3) и некоторые другие его соединения. В земной коре содержание хрома в пересчете на металл составляет 0,03%. Хром обнаружен на Солнце, звездах, метеоритах.

Физические свойства .

Хром – белый, твердый и хрупкий металл, исключительно химически стойкий к воздействию кислот и щелочей. На воздухе он окисляется, имеет на поверхности тонкую прозрачную пленку оксида. Хром имеет плотность 7,1 г/см 3 , его температура плавления составляет +1875 0 С.

Получение.

При сильном нагреве хромистого железняка с углем происходит восстановление хрома и железа:

FeO * Cr 2 O 3 + 4C = 2Cr + Fe + 4CO

В результате этой реакции образуется сплав хрома с железом, отличающийся высокой прочностью. Для получения чистого хрома, его восстанавливают из оксида хрома(3) алюминием:

Cr 2 O 3 + 2Al = Al 2 O 3 + 2Cr

В данном процессе обычно используют два оксида – Cr 2 O 3 и CrO 3

Химические свойства.

Благодаря тонкой защитной пленке оксида, покрывающей поверхность хрома, он весьма устойчив к воздействию агрессивных кислот и щелочей. Хром не реагирует с концентрированными азотной и серной кислотами, а также с фосфорной кислотой. Со щелочами хром вступает во взаимодействие при t = 600-700 о C. Однако хром взаимодействует с разбавленными серной и соляной кислотами, вытесняя водород:

2Cr + 3H 2 SO 4 = Cr 2 (SO 4) 3 + 3H 2
2Cr + 6HCl = 2CrCl 3 + 3H 2

При высокой температуре хром горит в кислороде, образуя оксид(III).

Раскаленный хром реагирует с парами воды:

2Cr + 3H 2 O = Cr 2 O 3 + 3H 2

Хром при высокой температуре реагирует также с галогенами, галоген - водородами, серой, азотом, фосфором, углем, кремнием, бором, например:

Cr + 2HF = CrF 2 + H 2
2Cr + N2 = 2CrN
2Cr + 3S = Cr 2 S 3
Cr + Si = CrSi

Вышеуказанные физические и химические свойства хрома нашли свое применение в различных областях науки и техники. Так, например, хром и его сплавы используются для получения высокопрочных, коррозионно-стойких покрытий в машиностроении. Сплавы в виде феррохрома используются в качестве металлорежущих инструментов. Хромированные сплавы нашли применение в медицинской технике, при изготовлении химического технологического оборудования.

Положение хрома в периодической системе химических элементов:

Хром возглавляет побочную подгруппу VI группы периодической системы элементов. Его электронная формула следующая:

24 Cr IS 2 2S 2 2P 6 3S 2 3P 6 3d 5 4S 1

В заполнении орбиталей электронами у атома хрома нарушается закономерность, согласно которой сначала должна была бы заполнятся 4S – орбиталь до состояния 4S 2 . Однако, вследствие того, что 3d – орбиталь занимает в атоме хрома более выгодное энергетическое положение, происходит ее заполнение до значения 4d 5 . Такое явление наблюдается у атомов некоторых других элементов побочных подгрупп. Хром может проявлять степени окисления от +1 до +6. Наиболее устойчивыми являются cоединения хрома со степенями окисления +2, +3, +6.

Соединения двухвалентного хрома.

Оксид хрома (II) CrO – пирофорный черный порошок (пирофорность – способность в тонкораздробленном состоянии воспламенятся на воздухе). CrO растворяется в разбавленной соляной кислоте:

CrO + 2HCl = CrCl 2 + H 2 O

На воздухе при нагревании свыше 100 0 С CrO превращается в Cr 2 O 3 .

Соли двухвалентного хрома образуются при растворении металлического хрома в кислотах. Эти реакции проходят в атмосфере малоактивного газа (например H 2), т.к. в присутствии воздуха легко происходит окисление Cr(II) до Cr(III).

Гидроксид хрома получают в виде желтого осадка при действии раствора щелочи на хлорид хрома (II):

CrCl 2 + 2NaOH = Cr(OH) 2 + 2NaCl

Cr(OH) 2 обладает основными свойствами, является восстановителем. Гидратированный ион Cr2+ окрашен в бледно – голубой цвет. Водный раствор CrCl 2 имеет синюю окраску. На воздухе в водных растворах соединения Cr(II) переходят в соединения Cr(III). Особенно это ярко выражается у гидроксида Cr(II):

4Cr(OH) 2 + 2H 2 O + O 2 = 4Cr(OH) 3

Соединения трехвалентного хрома.

Оксид хрома (III) Cr 2 O 3 – тугоплавкий порошок зеленого цвета. По твердости близок к корунду. В лаборатории его можно получить нагреванием дихромата аммония:

(NH 4) 2 Cr 2 O 7 = Cr 2 O 3 + N 2 + 4H 2

Cr 2 O 3 – амфотерный оксид, при сплавлении со щелочами образует хромиты: Cr 2 O 3 + 2NaOH = 2NaCrO 2 + H 2 O

Гидроксид хрома также является амфотерным соединением:

Cr(OH) 3 + HCl = CrCl 3 + 3H 2 O
Cr(OH) 3 + NaOH = NaCrO 2 + 2H 2 O

Безводный CrCl 3 имеет вид листочков темно-фиолетового цвета, совершенно нерастворим в холодной воде, при кипячении он растворяется очень медленно. Безводный сульфат хрома (III) Cr 2 (SO 4) 3 розового цвета, также плохо растворим в воде. В присутствии восстановителей образует фиолетовый сульфат хрома Cr 2 (SO 4) 3 *18H 2 O. Известны также зеленые гидраты сульфата хрома, содержащие меньшее количество воды. Хромовые квасцы KCr(SO 4) 2 *12H 2 O выкристаллизовываются из растворов, содержащих фиолетовый сульфат хрома и сульфат калия. Раствор хромовых квасцов при нагревании становится зеленым благодаря образованию сульфатов.

Реакции с хромом и его соединениями

Почти все соединения хрома и их растворы интенсивно окрашены. Имея бесцветный раствор или белый осадок, мы можем с большой долей вероятности сделать вывод об отсутствии хрома.

  1. Сильно нагреем в пламени горелки на фарфоровой чашке такое количество бихромата калия, которое поместится на кончике ножа. Соль не выделит кристаллизационной воды, а расплавится при температуре около 400 0 С с образование темной жидкости. Погреем ее еще несколько минут на сильном пламени. После охлаждения на черепке образуется зеленый осадок. Часть его растворим в воде (она приобретает желтый цвет), а другую часть оставим на черепке. Соль при нагревании разложилась, в результате образовался растворимый желтый хромат калия K 2 CrO 4 и зеленый Cr 2 O 3 .
  2. Растворим 3г порошкообразного бихромата калия в 50мл воды. К одной части добавим немного карбоната калия. Он растворится с выделением CO 2 , а окраска раствора станет светло – желтой. Из бихромата калия образуется хромат. Если теперь по порциям добавить 50% раствор серной кислоты, то снова появится красно – желтая окраска бихромата.
  3. Нальем в пробирку 5мл. раствора бихромата калия, прокипятим с 3мл концентрированной соляной кислоты под тягой. Из раствора выделяется желто-зеленый ядовитый газообразный хлор, потому, что хромат окислит HCl до Cl 2 и H 2 O. Сам хромат превратится в зеленый хлорид трехвалентного хрома. Его можно выделить выпариванием раствора, а потом, сплавив с содой и селитрой, перевести в хромат.
  4. При добавлении раствора нитрата свинца выпадает желтый хромат свинца; при взаимодействии с раствором нитрата серебра образуется красно – коричневый осадок хромата серебра.
  5. Добавим пероксид водорода к раствору бихромата калия и подкислим раствор серной кислотой. Раствор приобретает глубокий синий цвет благодаря образованию пероксида хрома. Пероксид при взбалтывании с некоторым количеством эфира перейдет в органический растворитель и окрасит его в голубой цвет. Данная реакция специфична для хрома и очень чувствительна. С ее помощью можно обнаружить хром в металлах и сплавах. Прежде всего необходимо растворить металл. При длительном кипячении с 30% - ной серной кислотой (можно добавить и соляную кислоту) хром и многие стали частично растворяются. Полученный раствор содержит сульфат хрома (III). Чтобы можно было провести реакцию обнаружения, сначала нейтрализуем его едким натром. В осадок выпадает серо-зеленый гидроксид хрома (III), который растворится в избытке NaOH и образует зеленый хромит натрия. Профильтруем раствор и добавим 30% -ый пероксид водорода. При нагревании раствор окрасится в желтый цвет, так как хромит окислится до хромата. Подкисление приведет к появлению голубой окраски раствора. Окрашенное соединение можно экстрагировать, встряхивая с эфиром.

Аналитические реакции на ионы хрома.

  1. К 3-4 каплям раствора хлорида хрома CrCl 3 прибавьте 2М раствор NaOH до растворения первоначально выпавшего осадка. Обратите внимание на цвет образовавшегося хромита натрия. Нагрейте полученный раствор на водяно бане. Что при этом происходит?
  2. К 2-3 каплям р-ра CrCl 3 прибавьте равный объем 8М раствора NaOH и 3-4 капли 3% р-ра H 2 O 2 . Нагрейте реакционную смесь на водяной бане. Что при этом происходит? Какой осадок образуется, если полученный окрашеный раствор нейтрализовать, добавить к нему CH 3 COOH, а затем Pb(NO 3) 2 ?
  3. Налейте в пробирку по 4-5 капель растворов сульфата хрома Cr 2 (SO 4) 3 , IMH 2 SO 4 и KMnO 4 . Нагрейте реакционную смест в течение нескольких минут на водяной бане. Обратите внимание на изменение окраски раствора. Чем оно вызвано?
  4. К 3-4 каплям подкисленного азотной кислотой раствора K 2 Cr 2 O 7 прибавьте 2-3 капли раствора H 2 O 2 и перемешайте. Появляющиеся синее окрашивание раствора обусловлено возникновением надхромовой кислоты H 2 CrO 6:

Cr 2 O 7 2- + 4H 2 O 2 + 2H + = 2H 2 CrO 6 + 3H 2 O

Обратите внимание на на быстрое разложение H 2 CrO 6:

2H 2 CrO 6 + 8H+ = 2Cr 3+ + 3O 2 + 6H 2 O
синий цвет зеленый цвет

Надхромовая кислота значительно более устойчива в органических растворителях.

  1. К 3-4 каплям подкисленного азотной кислотой раствора K 2 Cr 2 O 7 прибавьте 5 капель изоамилового спирта, 2-3 капли раствора H 2 O 2 и взболтайте реакционную смесь. Всплывающий на верх слой органического растворителя окрашен в ярко-синий цвет. Окраска исчезает очень медленно. Сравните устойчивость H 2 CrO 6 в органической и водных фазах.
  2. При взаимодействии CrO 4 2- и ионами Ba 2+ выпадает желтый осадок хромата бария BaCrO 4 .
  3. Нитрат серебра образует с ионами CrO 4 2- осадок хромата серебра кирпично-красного цвета.
  4. Возьмите три пробирки. В одну из них поместите 5- 6 капель раствора K 2 Cr 2 O 7 , во вторую – такой же объем раствора K 2 CrO 4 , а в третью – по три капли обоих растворов. Затем добавте в каждую пробирку по три капли раствора иодида калия. Объясните полученный результат. Подкислите раствор во второй пробирке. Что при этом происходит? Почему?

Занимательные опыты с соединениями хрома

  1. Смесь CuSO 4 и K 2 Cr 2 O 7 при добавлении щелочи становится зеленой, а в присутствии кислоты становится желтой. Нагревая 2мг глицерина с небольшим количеством (NH 4) 2 Cr 2 O 7 с последующим добавлением спирта, после фильтрования получается ярко-зеленый раствор, который при добавлении кислоты становится желтым, а в нейтральной или щелочной среде становится зеленым.
  2. Поместить в центр консервной банки с термитом «рубиновую смесь» - тщательно растертый и помещенный в алюминиевую фольгу Al 2 O 3 (4,75г) с добавкой Cr 2 O 3 (0,25г). Чтобы банка подольше не остывала, необходимо закопать под верхний обрез в песок, а после поджигания термита и начала реакции, накрыть ее железным листом и засыпать песком. Банку выкопать через сутки. В итоге образуется красно – рубиновый порошок.
  3. 10г бихромата калия растирают с 5г нитрата натрия или калия и 10г сахара. Смесь увлажняют и смешивают с коллодием. Если порошок спрессовать в стеклянной трубке, а затем вытолкнуть палочку и поджечь ее с торца, то начнет выползать «змея», сначала черная, а после охлаждения - зеленая. Палочка диаметром 4 мм горит со скоростью около 2мм в секунду и удлиняется в 10 раз.
  4. Если смешать растворы сульфата меди и дихромата калия и добавить немного раствора аммиака, то выпадет аморфный коричневый осадок состава 4СuCrO 4 * 3NH 3 * 5H 2 O, который растворяется в соляной кислоте с образованием желтого раствора, а в избытке аммиака получается зеленый раствор. Если далее к этому раствору добавить спирт, то выпадет зеленый осадок, который после фильтрации становится синим, а после высушивания – сине-фиолетовым с красными блестками, хорошо видимыми при сильном освещении.
  5. Оставшийся после опытов «вулкан» или «фараоновы змеи» оксид хрома можно регенерировать. Для этого надо сплавить 8г Cr 2 O 3 и 2г Na 2 CO 3 и 2,5г KNO 3 и обработать остывший сплав кипятком. Получается растворимый хромат, который можно превратить и в другие соединения Cr(II) и Cr(VI), в том числе и исходный дихромат аммония.

Примеры окислительно – восстановительных переходов с участием хрома и его соединений

1. Cr 2 O 7 2- -- Cr 2 O 3 -- CrO 2 - -- CrO 4 2- -- Cr 2 O 7 2-

a) (NH 4) 2 Cr 2 O 7 = Cr 2 O 3 + N 2 + 4H 2 Oб) Cr 2 O 3 + 2NaOH = 2NaCrO 2 + H 2 O
в) 2NaCrO 2 + 3Br 2 + 8NaOH = 6NaBr +2Na 2 CrO 4 + 4H 2 O
г) 2Na 2 CrO 4 + 2HCl = Na 2 Cr 2 O 7 + 2NaCl + H 2 O

2. Cr(OH) 2 -- Cr(OH) 3 -- CrCl 3 -- Cr 2 O 7 2- -- CrO 4 2-

а) 2Cr(OH) 2 + 1/2O 2 + H 2 O = 2Cr(OH) 3
б) Cr(OH) 3 + 3HCl = CrCl 3 + 3H 2 O
в) 2CrCl 3 + 2KMnO 4 + 3H 2 O = K 2 Cr 2 O 7 + 2Mn(OH) 2 + 6HCl
г) K 2 Cr 2 O 7 + 2KOH = 2K 2 CrO 4 + H 2 O

3. CrO -- Cr(OH) 2 -- Cr(OH) 3 -- Cr(NO 3) 3 -- Cr 2 O 3 -- CrO - 2
Cr 2+

а) CrO + 2HCl = CrCl 2 + H 2 O
б) CrO + H 2 O = Cr(OH) 2
в) Cr(OH) 2 + 1/2O 2 + H 2 O = 2Cr(OH) 3
г) Cr(OH) 3 + 3HNO 3 = Cr(NO 3) 3 + 3H 2 O
д) 4Сr(NO 3) 3 = 2Cr 2 O 3 + 12NO 2 + O 2
е) Cr 2 O 3 + 2 NaOH = 2NaCrO 2 + H 2 O

Элемент хром в роли художника

Химики довольно часто обращались к проблеме создания искусственных пигментов для живописи. В XVIII-XIXвв была разработана технология получения многих живописных материалов. Луи Никола Воклен в 1797г., обнаруживший в сибирской красной руде ранее неизвестный элемент хром, приготовил новую, замечательно устойчивую краску – хромовую зелень. Хромофором ее является водный оксид хрома (III). Под названием « изумрудная зеленая» ее начали выпускать в 1837 году. Позже Л.Вокелен предложил несколько новых красок: баритовую, цинковую и хромовые желтые. Со временем они были вытеснены более стойкими желтыми, оранжевыми пигментами на основе кадмия.

Зеленая хромовая – самая прочная и светостойкая краска, не поддающаяся воздействию атмосферных газов. Растертая на масле хромовая зелень обладает большой кроющей силой и способна к быстрому высыханию, поэтому с XIX в. ее широко применяют в живописи. Огромное значение она имеет в росписи фарфора. Дело в том, что фарфоровые изделия могут декорироваться как подглазурной, так и надглазурной росписью. В первом случае краски наносят на поверхность лишь слегка обожженного изделия, которое затем покрывают слоем глазури. Далее следует основной, высокотемпературный обжиг: для спекания фарфоровой массы и оплавления глазури изделия нагревают до 1350 – 1450 0 С. Столь высокую температуру без химических изменений выдерживают очень немногие краски, а в старину таких вообще было только две – кобальтовая и хромовая. Черный оксид кобальта, нанесенный на поверхность фарфорового изделия, при обжиге сплавляется с глазурью, химически взаимодействуя с ней. В результате образуются ярко-синие силикаты кобальта. Такую декарированную кобальтом синюю фарфоровую посуду все хорошо знают. Оксид хрома (III) не взаимодействует химически с компонентами глазури и просто залегает между фарфоровыми черепками и прозрачной глазурью «глухим» слоем.

Помимо хромовой зелени художники применяют краски, полученные из волконскоита. Этот минерал из группы монтмориллонитов (глинистый минерал подкласса сложных силикатов Na(Mo,Al), Si 4 O 10 (OH) 2 был обнаружен в 1830г. русским минералогом Кеммерером и назван в честь М.Н Волконской – дочери героя битвы при Бородино генерала Н.Н. Раевского, жены декабриста С.Г.Волконского. Волконскоит представляет собой глину, содержащую до 24% оксида хрома, а так же оксиды аллюминея и железа (III). Непостоянство состава минерала, встечающегося на Урале, в Пермской и Кировской областях, обусловливает его разнообразную окраску – от цвета зимней потемневшей пихты до ярко-зеленого цвета болотной лягушки.

Пабло Пикассо обращался к геологам нашей страны с просьбой изучить запасы волконскоита, дающего краску неповторимо свежего тона. В настоящее время разработан способ получения искусственного волконскоита. Интересно отметить, что по данным современных исследований, русские иконописцы использовали краски из этого материала еще в средние века, задолго до его «официального» открытия. Известной популярностью пользовалась у художников и зелень Гинье (создана в 1837г.), хромоформ которой является гидрат окиси хрома Cr 2 O 3 * (2-3) H 2 O, где часть воды химически связана, а часть адсорбирована. Этот пигмент придает краске изумрудный оттенок.

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Хром - химический элемент с атомным номером 24. Это твердый, блестящий, серо-стального цвета металл, который хорошо полируется и не тускнеет. Используется в сплавах, таких как нержавеющая сталь, и в качестве покрытия. Организму человека требуются небольшие количества трехвалентного хрома для метаболизма сахара, но Cr (VI) очень токсичен.

Различные соединения хрома, такие как окись хрома (III) и хромат свинца, ярко окрашены и используются в красках и пигментах. Красный цвет рубина обусловлен наличием этого химического элемента. Некоторые вещества, особенно и натрия, являются окислителями, используемыми для окисления органических соединений и (вместе с серной кислотой) для очистки лабораторной посуды. Кроме того, окись хрома (VI) применяется в производстве магнитной ленты.

Открытие и этимология

История открытия химического элемента хром такова. В 1761 году Иоганн Готлоб Леман нашел в Уральских горах оранжево-красный минерал и назвал его «сибирским красным свинцом». Хотя он ошибочно был идентифицирован как соединение свинца с селеном и железом, материал на самом деле являлся хроматом свинца с химической формулой PbCrO 4 . Сегодня он известен как минерал кроконт.

В 1770 году Петр Симон Паллас посетил то место, где Леман нашел красный свинцовый минерал, который имел очень полезные свойства пигмента в красках. Использование сибирского красного свинца в качестве краски получило быстрое развитие. Кроме того, ярко-желтый цвет из кроконта стал модным.

В 1797 году Николя-Луи Воклен получил образцы красной Путем смешивания кроконта с соляной кислотой он получил оксид CrO 3 . Хром как химический элемент был выделен в 1798 году. Воклен получил его при нагревании окисла с древесным углем. Он также смог обнаружить следы хрома в драгоценных камнях, таких как рубин и изумруд.

В 1800-х годах Cr в основном применялся в составе красок и кожевенных солей. Сегодня 85% металла используется в сплавах. Остальная часть применяется в химической промышленности, производстве огнеупорных материалов и литейной промышленности.

Произношение химического элемента хром соответствует греческому χρῶμα, что означает «цвет», из-за множества цветных соединений, которые из него можно получить.

Добыча и производство

Элемент производят из хромита (FeCr 2 O 4). Примерно половина этой руды в мире добывается в Южной Африке. Кроме того, Казахстан, Индия и Турция являются его крупными производителями. Разведанных месторождений хромита достаточно, но географически они сконцентрированы в Казахстане и на юге Африки.

Залежи самородного металлического хрома встречаются редко, но они есть. Например, его добывают на шахте «Удачная» в России. Она является богатой алмазами, и восстановительная среда помогла образоваться чистому хрому и алмазам.

Для промышленного производства металла хромитовые руды обрабатывают расплавленной щелочью (едким натром, NaOH). При этом образуется хромат натрия (Na 2 CrO 4), который восстанавливается углеродом до оксида Сг 2 O 3 . Металл получают при нагревании окисла в присутствии алюминия или кремния.

В 2000 году было добыто около 15 млн т хромитовой руды, которая была переработана в 4 млн т феррохрома, на 70% состоящего из сплава хрома с железом, приблизительная рыночная стоимость которых составила 2,5 млрд долларов США.

Основные характеристики

Характеристика химического элемента хрома обусловлена тем, что он является переходным металлом четвертого периода таблицы Менделеева и расположен между ванадием и марганцем. Входит в VI группу. Плавится при температуре 1907 °С. В присутствии кислорода хром быстро образует тонкий слой оксида, который защищает металл от дальнейшего взаимодействия с кислородом.

Как переходный элемент, он реагирует с веществами в различных соотношениях. Таким образом он образует соединения, в которых имеет различные степени окисления. Хром - химический элемент с основными состояниями +2, +3 и +6, из которых +3 является наиболее устойчивым. Кроме того, в редких случаях наблюдаются состояния +1, +4 и +5. Соединения хрома в степени окисления +6 представляют собой сильные окислители.

Какого цвета хром? Химический элемент придает рубиновый оттенок. Сг 2 O 3 , используемый для также применяется в качестве пигмента под названием «хромовая зелень». Его соли окрашивают стекло в изумрудно-зеленый цвет. Хром - химический элемент, присутствие которого делает рубин красным. Поэтому он используется в производстве синтетических рубинов.

Изотопы

Изотопы хрома обладают атомным весом от 43 до 67. Обычно данный химический элемент состоит из трех стабильных форм: 52 Cr, 53 Cr и 54 Cr. Из них наиболее распространен 52 Cr (83,8% всего природного хрома). Кроме того, описаны 19 радиоизотопов, из которых наиболее стабильным является 50 Cr с периодом полураспада, превышающим 1,8x10 17 лет. У 51 Cr период полураспада - 27,7 дней, а у всех остальных радиоактивных изотопов он не превышает 24 ч, причем у большинства из них он длится менее одной минуты. Элемент также имеет два метасостояния.

Изотопы хрома в земной коре, как правило, сопутствуют изотопам марганца, что находит применение в геологии. 53 Cr образуется при радиоактивном распаде 53 Mn. Соотношение изотопов Mn/Cr подкрепляет другие сведения о ранней истории Солнечной системы. Изменения в соотношениях 53 Cr/ 52 Cr и Mn/Cr из разных метеоритов доказывает то, что новых атомные ядра были созданы непосредственно перед формированием Солнечной системы.

Химический элемент хром: свойства, формула соединений

Оксид хрома (III) Сг 2 O 3 , также известный как полуторная окись, является одним из четырех окислов этого химического элемента. Его получают из хромита. Соединение зеленого цвета обычно называют «хромовой зеленью», когда используют в качестве пигмента для живописи по эмали и стеклу. Оксид может растворяться в кислотах, образуя соли, а в расплавленной щелочи - хромиты.

Бихромат калия

K 2 Cr 2 O 7 является мощным окислителем и ему отдается предпочтение в качестве средства для очистки лабораторной посуды от органики. Для этого используется его насыщенный раствор в Иногда, однако, его заменяют бихроматом натрия, исходя из более высокой растворимости последнего. Кроме того, он может регулировать процесс окисления органических соединений, преобразуя первичный спирт в альдегид, а затем в углекислоту.

Бихромат калия способен вызвать хромовый дерматит. Хром, вероятно, является причиной сенсибилизации, ведущей к развитию дерматита, особенно рук и предплечий, который носит хронический характер и трудно излечим. Как и другие соединения Cr (VI), бихромат калия канцерогенен. С ним нужно обращаться в перчатках и соответствующими средствами защиты.

Хромовая кислота

Соединение обладает гипотетической структурой H 2 CrO 4 . Ни хромовая, ни дихромовая кислоты не встречаются в природе, но их анионы находят в различных веществах. «Хромовая кислота», которую можно встретить в продаже, на самом деле является ее кислотным ангидридом - триоксидом CrO 3 .

Хромат свинца (II)

PbCrO 4 обладает ярко-желтой окраской и практически не растворим в воде. По этой причине он нашел применение в качестве красящего пигмента под названием «желтый крон».

Cr и пятивалентная связь

Хром отличается своей способностью образовывать пятивалентные связи. Соединение создается Cr (I) и углеводородным радикалом. Пятивалентная связь формируется между двумя атомами хрома. Его формула может быть записана как Ar-Cr-Cr-Ar, где Ar представляет собой специфическую ароматическую группу.

Применение

Хром - химический элемент, свойства которого обеспечили ему множество различных вариантов применения, некоторые из которых приведены ниже.

Металлам он придает устойчивость к коррозии и глянцевую поверхность. Поэтому хром входит в состав таких сплавов, как нержавеющая сталь, используемых, например, в столовых приборах. Он также применяется для нанесения хромированного покрытия.

Хром является катализатором различных реакций. Из него делают формы для обжига кирпича. Его солями дубят кожу. Бихромат калия применяют для окисления органических соединений, таких как спирты и альдегиды, а также для очистки лабораторной посуды. Он служит фиксирующим агентом для окрашивания ткани, а также используется в фотографии и фотопечати.

CrO 3 применяется для изготовления магнитных лент (например, для аудиозаписи), которые обладают лучшими характеристиками, чем пленки с оксидом железа.

Роль в биологии

Трехвалентный хром - химический элемент, необходимый для метаболизма сахара в организме человека. Напротив, шестивалентный Cr очень токсичен.

Меры предосторожности

Металлический хром и соединения Cr (III), как правило, не считаются опасными для здоровья, но вещества, содержащие Cr (VI), могут быть токсичными, если их принимать внутрь или вдыхать. Большинство таких веществ оказывают раздражающее действие на глаза, кожу и слизистые оболочки. При постоянном воздействии соединения хрома (VI) могут вызвать повреждение глаз, если их не лечить должным образом. Кроме того, это признанный канцероген. Смертельная доза данного химического элемента - около половины чайной ложки. Согласно рекомендациям Всемирной организации здравоохранения, предельно допустимая концентрация Cr (VI) в питьевой воде составляет 0,05 мг на литр.

Так как соединения хрома используются в красителях и для дубления кожи, они часто встречаются в почве и грунтовых водах заброшенных промышленных объектов, требующих экологической очистки и восстановления. Грунтовка, содержащая Cr (VI), до сих пор широко применяется в аэрокосмической промышленности и автомобилестроении.

Свойства элемента

Основные физические свойства хрома следующие:

  • Атомное число: 24.
  • Атомный вес: 51,996.
  • Температура плавления: 1890 °C.
  • Температура кипения: 2482 °C.
  • Степень окисления: +2, +3, +6.
  • Конфигурация электронов: 3d 5 4s 1 .

Хром (Cr), химический элемент VI группы периодической системы Менделеева. Относится к переходным металлом с атомным номером 24 и атомной массой 51,996. В переводе с греческого, название металла означает «цвет». Такому названию металл обязан разнообразной цветовой гамме, которая присуща его различным соединениям.

Физические характеристики хрома

Металл обладает достаточной твердостью и хрупкостью одновременно. По шкале Мооса твердость хрома оценивается в 5,5. Этот показатель означает, что хром имеет максимальную твердость из всех известных на сегодня металлов, после урана, иридия, вольфрама и бериллия. Для простого вещества хрома характерен голубовато-белый окрас.

Металл не относится к редким элементам. Его концентрация в земной коре достигает 0,02% масс. долей. В чистом виде хром не встречается никогда. Он содержится в минералах и рудах, которые являются главным источником добычи металла. Хромит (хромистый железняк, FeO*Cr 2 O 3) считается основным соединением хрома. Еще одним достаточно распространенным, однако менее важным минералом, является крокоит PbCrO 4 .

Металл легко поддается плавке при температуре 1907 0 С (2180 0 К или 3465 0 F). При температуре в 2672 0 С - закипает. Атомная масса металла составляет 51,996 г/моль.

Хром является уникальным металлом благодаря своим магнитным свойствам. В условиях комнатной температуры ему присуще антиферромагнитное упорядочение, в то время, как другие металлы обладают им в условиях исключительно пониженных температур. Однако, если хром нагреть выше 37 0 С, физические свойства хрома изменяются. Так, существенно меняется электросопротивление и коэффициент линейного расширения, модуль упругости достигает минимального значения, а внутреннее трение значительно увеличивается. Такое явление связано с прохождением точки Нееля, при которой антиферромагнитные свойства материала способны изменяться на парамагнитные. Это означает, что первый уровень пройден, и вещество резко увеличилось в объеме.

Строение хрома представляет собой объемно-центрированную решетку, благодаря которой металл характеризуется температурой хрупко-вязкого периода. Однако, в случае с данным металлом, огромное значение имеет степень чистоты, поэтому, величина находится в пределах -50 0 С - +350 0 С. Как показывает практика, раскристаллизированный металл не имеет никакой пластичности, но мягкий отжиг и формовка делают его ковким.

Химические свойства хрома

Атом имеет следующую внешнюю конфигурацию: 3d 5 4s 1 . Как правило, в соединениях хром имеет следующие степени окисления: +2, +3, +6, среди которых наибольшую устойчивость проявляет Сr 3+ .Кроме этого существуют и другие соединения, в которых хром проявляет совершенно иную степень окисления, а именно: +1, +4, +5.

Металл не отличается особой химической активностью. Во время нахождения хрома в обычных условиях, металл проявляет устойчивость к влаге и кислороду. Однако, данная характеристика не относится к соединению хрома и фтора - CrF 3 , которое при воздействии температур, превышающих 600 0 С, взаимодействует с парами воды, образуя в результате реакции Сr 2 О 3 , а также азотом, углеродом и серой.

Во время нагревания металлического хрома, он взаимодействует с галогенами, серой, кремнием, бором, углеродом, а также некоторыми другими элементами, в результате чего получаются следующие химические реакции хрома:

Cr + 2F 2 = CrF 4 (с примесью CrF 5)

2Cr + 3Cl 2 = 2CrCl 3

2Cr + 3S = Cr 2 S 3

Хроматы можно получить, если нагреть хром с расплавленной содой на воздухе, нитратами или хлоратами щелочных металлов:

2Cr + 2Na 2 CO 3 + 3O 2 = 2Na 2 CrO 4 + 2CO 2 .

Хром не обладает токсичностью, чего нельзя сказать о некоторых его соединениях. Как известно, пыль данного металла, при попадании в организм, может раздражать легкие, через кожу она не усваивается. Но, поскольку в чистом виде он не встречается, то его попадание в человеческий организм является невозможным.

Трехвалентный хром попадает в окружающую среду во время добычи и переработки хромовой руды. В человеческий организм попадание хрома вероятно в виде пищевой добавки, используемой в программах по похудению. Хром с валентностью, равной +3, является активным участником синтеза глюкозы. Ученые установили, что излишнее употребление хрома особого вреда человеческому организму не наносит, поскольку не происходит его всасывание, однако, он способен накапливаться в организме.

Соединения, в котором участвует шестивалентный металл, являются крайне токсичными. Вероятность их попадания в человеческий организм появляется во время производства хроматов, хромирования предметов, во время проведения некоторых сварочных работ. Попадание такого хрома в организм чревато серьезными последствиями, так как соединения, в которых присутствует шестивалентный элемент, представляют собой сильные окислители. Поэтому, могут вызвать кровотечение в желудке и кишечнике, иногда с прободением кишечника. При попадании таких соединений на кожу возникают сильные химические реакции в виде ожогов, воспалений, возникновения язв.

В зависимости от качества хрома, которое необходимо получить на выходе, существует несколько способов производства металла: электролизом концентрированных водных растворов оксида хрома, электролизом сульфатов, а также восстановлением оксидом кремния. Однако, последний способ не очень популярен, так как при нем на выходе получается хром с огромным количеством примесей. Кроме того, он также является экономически невыгодным.

Характерные степени окисления хрома
Степень окисления Оксид Гидроксид Характер Преобладающие формы в растворах Примечания
+2 CrO (чёрный) Cr(OH)2 (желтый) Основный Cr2+ (соли голубого цвета) Очень сильный восстановитель
Cr2O3 (зелёный) Cr(OH)3 (серо-зеленый) Амфотерный

Cr3+ (зеленые или лиловые соли)
- (зелёный)

+4 CrO2 не существует Несолеобразующий -

Встречается редко, малохарактерна

+6 CrO3 (красный)

H2CrO4
H2Cr2O7

Кислотный

CrO42- (хроматы, желтые)
Cr2O72- (дихроматы, оранжевые)

Переход зависит от рН среды. Сильнейший окислитель, гигроскопичен, очень ядовит.

Публикации по теме