Графиком функции у к х является. Линейная функция

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Функция y=k/x , её свойства и график. Учитель математики МКОУ «Хохольский лицей» Логвинова Ирина Алексеевна

Образовательные: сформулировать определение обратной пропорциональности, ее области определения; научить строить график функции y = k / x опираясь на свойства функции; сформировать чёткое представление о различиях свойств и расположения графика функции при различных значениях k ; научить находить значение функции и аргумента по формуле У= k/x . Развивающие: совершенствовать умения логически мыслить и выражать свои мысли вслух; стимулировать познавательную деятельность учащихся постановкой проблемного задания, оценкой и поощрением; способствовать развитию находчивости, сообразительности. Воспитательные: воспитывать у учащихся стремление к совершенствованию своих знаний; воспитывать интерес к предмету. 2 Цели урока

07.10.2014 3 Виды Функций Зависимость одной переменной от другой, называется функцией y = kx y=x 3 y=x 2 y = kx+b

07.10.2014 4 Скорость велосипедиста V км / ч; t ч – время. Сколько времени потребуется велосипедисту, чтобы проехать 20 км? Выразить зависимость t от V .

07.10.2014 5 Площадь прямоугольника 35 кв. см. Одна сторона прямоугольника а см, другая в см. Выразить зависимость в от а.

07.10.2014 6 Р руб. цена товара, m количество товара. Сколько товара можно купить на 90 руб? Выразить зависимость m от Р.

07.10.2014 7 Что общего и в чем различие этих формул? Составить функцию, которая является обобщением рассмотренных зависимостей.

Определение Обратной пропорциональностью называется функция, заданная формулой y = k/x, где k ≠ 0 , где х – независимая переменная. Число k называется коэффициентом обратной пропорциональности

В явлениях природы, в человеческой деятельности часто встречаются обратно пропорциональные зависимости между двумя величинами. Как графиком можно представить эту зависимость? График обратно пропорциональной функции называется ГИПЕРБОЛА

График функции 12 х _ у = х у -1 -2 -4 -3 -6 -8 -12 -12 -6 -4 -3 -2 -1,5 -1 х у 1 2 3 4 6 8 12 12 6 4 3 2 1,5 1 Построим по точкам график функции

гипербола

1 вариант 2 вариант Г рафик функции у = к/ х и её свойства у = к/х,к˂0 у = к/х,к˃0 1. Область определения функции 2. Область значений функции 3. у >0 , у

14 Термин «функция» в 1664г. ввёл немецкий учёный Лейбниц. Определение функции дал его ученик Бернулли в 1718 году Одним из первых, кто начал изучать эту кривую был ученик знаменитого Платона, древнегреческий математик Менехм в IV в. до н.э., но так и не сумел её полностью изучить. А вот полностью исследовал свойства гиперболы и дал ей название крупнейший геометр древности Аполоний Пергский в III в. до н.э.

Тестовые задания по теме “ Обратная пропорциональность ” 1) Какая из формул задаёт обратную пропорциональность 3) 4) 5) 1) 2)

2) Какая из указанных точек принадлежит графику функции y = -8/x ? 1) A(1;8) 2) B(-1;-8) 3) С(1 ; -8) Тестовые задания по теме “ Обратная пропорциональность ”

1. На одном из рисунков изображена гипербола. Укажите этот рисунок. 1 3 4 2

Что является графиком функции В каких координатных четвертях расположен график функции? Какова область определения функции Какими свойствами обладает график функции обратной пропорциональной зависимости? Как называется график обратно пропорциональной функции? Из чего состоит гипербола? 18 Итог урока

Интересные факты 19 Из словаря русского языка Ожегова слово гипербола обозначает в поэтике - приём чрезмерного преувеличения с целью усиления впечатления». В Большой Российской энциклопедии (т.7) – неправдоподобное преувеличение тех или иных свойств изображения предмета или явления». Например: «…редкая птица долетит до середины Днепра» Н.В. Гоголь. Часто гипербола встречается в частушках: Сидит лодырь у ворот Широко разинув рот, И никто не разберёт, Где ворота, а где рот.

Функцией Коэффициент k может принимать любые значения, кроме k = 0. Рассмотрим сначала случай, когда k = 1; таким образом, сначала речь пойдет о функции .

Чтобы построить график функции , поступим так же, как и в предыдущем параграфе: дадим независимой переменной х несколько конкретных значений и вычислим (по формулe ) соответствующие значения зависимой переменной у. Правда, на этот раз удобнее проводить вычисления и построения постепенно, сначала придавая аргументу только положительные значения, а затем - только отрицательные.

Первый этап. Если х = 1, то у = 1 (напомним, что мы пользуемся формулой );

Второй этап.

Короче говоря, мы составили следующую таблицу:

А теперь объединим два этапа в один, т. е. из двух рисунков 24 и 26 сделаем один (рис. 27). Это и есть график функции его называют гиперболой.
Попробуем по чертежу описать геометрические свойства гиперболы.

Во-первых , замечаем, что эта линия выглядит так же красиво, как парабола, поскольку обладает симметрией. Любая прямая, проходящая через начало координат О и расположенная в первом и третьем координатных углах, пересекает гиперболу в двух точках, которые лежат на этой прямой по разные стороны от точки О, но на равных расстояниях от нее (рис. 28). Это присуще, в частности, точкам (1; 1) и (- 1; - 1),

И т. д.Значит - О центр симметрии гиперболы. Говорят также, что гипербола симметрична относительно начала координат .

Во-вторых , видим, что гипербола состоит из двух симметричных относительно начала координат частей; их обычно называют ветвями гиперболы.

В-третьих, замечаем, что каждая ветвь гиперболы в одном направлении подходит все ближе и ближе к оси абсцисс, а в другом направлении - к оси ординат. В подобных случаях соответствующие прямые называют асимптотами.

Значит, график функции , т.е. гипербола, имеет две асимптоты: ось х и ось у.

Если внимательно проанализировать построенный график, то можно обнаружить еще одно геометрическое свойство, не такое очевидное, как три предыдущих (математики обычно говорят так: «более тонкое свойство»). У гиперболы имеется не только центр симметрии, но и оси симметрии.

В самом деле, построим прямую у = х (рис. 29). А теперь смотрите: точки расположены по разные стороны от проведенной прямой , но на равных расстояниях от нее. Они симметричны, относительно этой прямой. Тоже можно сказать о точках , где, конечно Значит, прямая y =x - ось симетрии гиперболы (равно как и y = -x)


Пример 1. Найти наименьшее и наибольшее значения функции а) на отрезке ; б) на отрезке [- 8, - 1].
Решение, а) Построим график функции и выделим ту его часть, которая соответствует значениям переменной х из отрезка (рис. 30). Для выделенной части графика находим:

б) Построим график функции и выделим ту его часть, которая соответствует значениям переменной х из отрезка [- 8, - 1] (рис. 31). Для выделенной части графика находим:


Итак, мы рассмотрели функцию для случая, когда k= 1. Пусть теперь k - положительное число, отличное от 1, например k = 2.

Рассмотрим функцию и составим таблицу значений этой функции:

Построим точки (1; 2), (2; 1), (-1; -2), (-2; -1),

на координатной плоскости (рис. 32). Они намечают некоторую линию, состоящую из двух ветвей; проведем ее (рис. 33). Как и график функции , эту линию называют гиперболой.

Рассмотрим теперь случай, когда k < 0; пусть, например, k = - 1. Построим график функции (здесь k = - 1).

В предыдущем параграфе мы отметили, что график функции у = -f(x) симметричен графику функции у = f(x) относительно оси х. В частности, это значит, что график функции y = - f(x) симметричен графику функции у = f(x) относительно оси x. В частности, это значит, что график , симетричен графику односительно оси абсцисс (рис. 34) Таким образом, мы получим гиперболу, ветви которой расположены во втором и четвертом координатных углах.

Вообще, графиком функции является гипербола, ветви которой расположены в первом и третьем координатных углах, если k > 0 (рис. 33), и во втором и четвертом координатных углах, если k < О (рис. 34). Точка (0; 0) - центр симметрии гиперболы, оси координат - асимптоты гиперболы.

Обычно говорят, что две величины х и у обратно пропорциональны, если они связаны соотношением ху = k (где k - число, отличное от 0), или, что то же самое, . По этой причине функцию называют иногда обратной пропорциональностью (по аналогии с функцией у - kx, которую, как вы, наверное,
помните, называют прямой пропорциональностью); число k - коэффициент обратной пропорциональности .

Свойства функции при k > 0

Описывая свойства этой функции, мы будем опираться на ее геометрическую модель- гиперболу (см., рис. 33).

2. у > 0 при х>0;у<0 при х<0.

3. Функция убывает на промежутках (-°°, 0) и (0, +°°).

5. Ни наименьшего, ни наибольшего значений у функции

Свойства функции при k < 0
Описывая свойства этой функции, мы будем опираться на ее геометрическую модель - гиперболу (см. рис. 34).

1. Область определения функции состоит из всех чисел, кроме х = 0.

2. у > 0 при х < 0; у < 0 при х > 0.

3. Функция возрастает на промежутках (-оо, 0) и (0, +оо).

4. Функция не ограничена ни снизу, ни сверху.

5. Ни наименьшего, ни наибольшего значений у функции нет.

6. Функция непрерывна на промежутках (-оо, 0) и (0, +оо) и претерпевает разрыв при х = 0.

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Публикации по теме