Что такое компьютер и как он устроен. Храм, церковь Но сначала разберемся с диодом

Любой автомобильный двигатель - сердце машины. Сегодня производителями изготавливаются моторы разного типа и модификаций. Все они конструктивно отличаются между собой, поэтому выбирая транспортное средство, необходимо знать, какой агрегат в нём установлен, его принцип работы, технические характеристики, преимущества и недостатки. Существуют компрессорный, турбированный и атмосферный двигатель.

Классификация атмосферных моторов

Атмосферник - двигатель внутреннего сгорания , в который через фильтры поступает воздух, где он смешивается с топливом. Полученная смесь попадает в камеру сгорания, воспламеняется и приводит в движение поршни, благодаря ему поддерживается вся работа автомобиля.

Двигатели внутреннего сгорания, преобразующие энергию тепла от сгорания топлива в механическую энергию движения, делятся на три группы:

  • дизельные;
  • газовые;
  • бензиновые.

Ещё в 19 столетии был создан первый бензиновый двигатель, который за время существования претерпел много изменений. Он нашёл широкое применение в автомобилестроении наряду с дизельным агрегатом. Газовый применяется только как дополнительный элемент к бензиновому мотору.

По способу подачи топлива все атмосферные агрегаты классифицируются на 2 типа:

  • карбюраторные;
  • инжекторные.

Карбюратор представляет собой узел системы питания мотора. В нём топливо смешивается с определённой частью воздуха, образуя воздушно-топливную смесь. Полученная смесь в наиболее приемлемом количестве и составе подаётся в цилиндры самого двигателя.

Инжектор или специальная форсунка - это электронно-механический узел в автомобиле, задача которого распылять топливо прямым впрыском непосредственно в цилиндр или во впускной коллектор.

Инжектор выигрывает у карбюратора по показателям эффективности. Карбюраторный агрегат потребляет больше топлива, содержание вредных веществ в выхлопе увеличивается, так как топливо сгорает менее полноценно. Управление системой требует ручной настройки.

Принцип работы

Понятие «атмосферный» говорит о том, что при горении топлива в цилиндрах принимает участие атмосферное давление. Атмосферники громоздкие и тяжёлые, поэтому конструкторы со временем нашли способ усовершенствовать их за счёт компрессоров или турбин. Тем не менее эти двигатели по-прежнему востребованы. Они устанавливаются на авто любого класса, но чаще всего на бюджетные легковые автомобили.

Двигатель работает за счёт энергии , вырабатываемой при воспламенении смеси топлива с воздухом, профильтрованным через воздушный фильтр. Эта энергия взрыва толкает поршень вниз, заставляя коленчатый вал вращаться. Вращательные движения коленвала передаются через муфту сцепления и систему трансмиссии на вращение колёс.

Агрегат работает повторяющимися одинаковыми циклами, каждый из которых состоит из четырёх тактов:

  1. Впуск воздушно-топливной смеси.
  2. Сжатие.
  3. Воспламенение.
  4. Выпуск отработанных газов.

Во время такта впуска выпускной клапан закрыт, а впускной открыт. Смесь топлива с воздухом при этом всасывается через впускной клапан в цилиндр.

С завершением хода поршня вниз впускной такт заканчивается. Горючее с воздухом втягивается в цилиндр, начинает всё больше сжиматься при подъёме поршня вверх.

Когда поршень закончит свой ход вверх, через свечу зажигания проходит электрический ток, вызывая в нём искровой разряд, немедленно взрывающий горючую смесь. Энергия взрыва опускает поршень, заставляя коленчатый вал вращаться. Эта и есть та сила, которая вращает колёса.

При завершении хода поршня вниз открывается выпускной клапан. Так как поршень начинает опять идти вверх, отработанный газ выталкивается из цилиндра через выпускной клапан. Коленчатый вал приводится во вращение дважды, пока поршень проходит через все 4 такта.

Непрерывная работа двигателя образуется постоянным повторением этих тактов - вот что значит атмосферный двигатель.

Устройство атмосферника

Как устроен двигатель, можно рассмотреть на примере четырёхтактного атмосферного. По функциям детали мотора разделяются примерно на 4 группы:

  1. Для обеспечения впуска и воспламенения топливно-воздушных смесей. К этой группе относятся головка блока цилиндров и клапанный механизм.
  2. Детали для обеспечения сжатия воздушно топливной смеси. Эта группа состоит из поршней, поршневых колец, блока цилиндра, клапана.
  3. Для передачи энергии мотора. В группе находятся шатуны, коленчатый вал, подшипники и маховики, их можно купить здесь: /uzp.net.ua/ru/podshypnyky/ .
  4. Детали для выработки искровых вспышек. Группу наполняют свечи зажигания и распределители.

Взаимодействие этих деталей мотора обеспечивает главное вращение колёс.

Головка блока цилиндров

Это главная часть двигателя, расположенная непосредственно над блоком цилиндров. Она постоянно подвергается действию сгорающих газов, имеющих высокую температуру и давление. Деталь делают из листового железа или из сплава алюминия с высокопрочными и высокотемпературными добавками.

Основание головки блока цилиндра углублено, образует вместе с поршнем и цилиндром камеру сгорания. Коэффициент полезного действия двигателя сильно зависит от формы камеры сгорания, а также от расположения клапанов и свечей зажигания.

Клапаны и сопутствующие детали

Современные четырёхтактные двигатели имеют 4 клапана для каждого цилиндра: 2 впускных и 2 выпускных. Для обеспечения эффективного впуска впускной клапан имеет больший диаметр, чем выпускной. Они изготавливаются из высокотемпературного никеля или хромированной стали.

Каждый клапан имеет сопутствующие детали: седло и пружина, которая является спиральной и создаёт тесный контакт с седлом, предотвращая утечку газа. Обычно в двигателях используется одна пружина, но в некоторых видах устанавливают по 2 штуки для каждого клапана.

Когда клапан закрыт, седло находится в плотном контакте с его поверхностью, чтобы обеспечить непроницаемость камеры сгорания.

Блок цилиндров образует каркас двигателя. Совместно с поршнями блок цилиндров играет важную роль в обеспечении преодоления давления сжатия и сгорания. Для минимизации износа деталей и утечек газа внутренняя поверхность каждого цилиндра отделена под высокое давление хромированием.

Отверстие цилиндра делается круговым. Однако верхняя часть цилиндра и поршня благодаря высокому давлению и температуре страдает от износа. Позже зазор между поршневыми кольцами и цилиндром увеличивается, приводя к потерям сжатия.

Поршень мотора

Деталь двигается в цилиндре вверх и вниз под действием давления, образующего взрывами топливно-воздушной смеси. При этом поршень через поршневой палец и шатун вращает коленчатый вал. Сечение поршня не является правильным кругом: диаметр в направлении поршневого пальца делается немного меньше для утечки теплового расширения.

Головка поршня становится гораздо горячее и расширяется больше, чем юбка. Для компенсации разницы в тепловом расширении диаметр поршня вверху сделан меньше, чем внизу. Кольца препятствуют утечкам под давлением сжатия смеси через зазор между цилиндром и поршнем. Обычно каждый поршень имеет 3 кольца.

Шатун агрегата

Он связывает поршень с коленчатым валом так, что вертикальное движение поршня преобразуется во вращательное движение коленвала. Поскольку шатун подвержен непрерывно действующим силам сжатия и растяжения, он должен быть довольно прочным и хорошо закреплённым, чтобы выдерживать эти нагрузки.

Коленчатый вал

Эта деталь преобразует через шатун прямолинейное движение каждого поршня во вращательное движение. Он состоит из шатунных шеек, которые передают силу поршней и валу, коленных шеек, регулирующих вращение вала и балансировочных грузов, обеспечивающих хорошее, сбалансированное вращение вала.

Коленвал вращается с большой скоростью, подвергаясь сильным нагрузкам от поршней, поэтому он должен быть довольно прочным и закреплённым, а также хорошо сбалансированным как статически, так и динамически.

Достоинства и недостатки

Многие автомобилисты до сих пор выбирают атмосферные агрегаты благодаря их преимуществам:

  • простота строения обеспечивает лёгкость в их обслуживании, возможность устранить неисправность самостоятельно и небольшие расходы;
  • простой принцип работы;
  • низкий расход масла: около 200−500 г на 10 тыс. км;
  • замена масла через 15 тыс. - 20 тыс. км;
  • хорошо справляется с низкокачественным топливом;
  • быстрый прогрев двигателя;
  • способность пройти без капитального ремонта свыше 500 тыс. км.

Из недостатков агрегата наиболее существенными по сравнению с турбированным двигателем являются:

  • выше расход топлива;
  • ниже мощность, динамичность и экологичность.

Развитие перспективных атмосферных двигателей идёт в направлении усовершенствования рабочего процесса, в увеличении степени сжатия и управлении фазами газораспределения, в применении впрыска топлива в цилиндры, уменьшении механических потерь и затрат на вспомогательное оборудование.

Персональный компьютер - универсальная техническая система.

Его конфигурацию (состав оборудования) можно гибко изменять по мере необходимости.

Тем не менее, существует понятие базовой конфигурации, которую считают типовой. В таком комплекте компьютер обычно поставляется.

Понятие базовой конфигурации может меняться.

В настоящее время в базовой конфигурации рассматривают четыре устройства:

  • системный блок;
  • монитор;
  • клавиатуру;
  • мышь.

Помимо компьютеров с базовой конфигурации все большее распространение получают мультимедийные компьютеры, оснащенные устройством чтения компакт-дисков, колонками и микрофоном.

Справка : «Юлмарт», на сегодняшний день самый хороший и удобный интернет магазин, где бесплатно вас проконсультируют при покупке компьютера любой конфигурации.

Системный блок представляет собой основной узел, внутри которого установлены наиболее важные компоненты.

Устройства, находящиеся внутри системного блока, называют внутренними, а устройства, подключаемые к нему снаружи, называют внешними.

Внешние дополнительные устройства, предназначенные для ввода, вывода и длительного хранения данных, также называют периферийными.

Как устроен системный блок

По внешнему виду системные блоки различаются формой корпуса.

Корпуса персональных компьютеров выпускают в горизонтальном (desktop) и вертикальном (tower) исполнении.

Корпуса, имеющие вертикальное исполнение, различают по габаритам:

  • полноразмерный (big tower);
  • среднеразмерный (midi tower);
  • малоразмерный (mini tower).

Среди корпусов, имеющих горизонтальное исполнение, выделяют плоские и особо плоские (slim).

Выбор того или иного типа корпуса определяется вкусом и потребностями модернизации компьютера.

Наиболее оптимальным типом корпуса для большинства пользователей является корпус типа mini tower.

Он имеет небольшие габариты, его удобно располагать как на рабочем столе, так и на тумбочке вблизи рабочего стола или на специальном держателе.

Он имеет достаточно места для размещения от пяти до семи плат расширения.

Кроме формы, для корпуса важен параметр, называемый форм-фактором.От него зависят требования к размещаемым устройствам.

В настоящее время в основном используются корпуса двух форм-факторов: AT и АТХ.

Форм-фактор корпуса должен быть обязательно согласован с форм-фактором главной (системной) платы компьютера, так называемой материнской платы.

Корпуса персональных компьютеров поставляются вместе с блоком питания и, таким образом, мощность блока питания также является одним из параметров корпуса.

Для массовых моделей достаточной является мощность блока питания 200-250 Вт.

В системный блок входит (вмещается):

  • Материнская плата
  • Микросхема ПЗУ и система BIOS
  • Энергонезависимая память CMOS
  • Жесткий диск

Материнская плата

Материнская плата (mother board ) - основная плата персонального компьютера, представляющая из себя лист стеклотекстолита, покрытый медной фольгой.

Путем травления фольги получают тонкие медные проводники соединяющие электронные компоненты.

На материнской плате размещаются:

  • процессор - основная микросхема, выполняющая большинство математических и логических операций;
  • шины - наборы проводников, по которым происходит обмен сигналами между внутренними устройствами компьютера;
  • оперативная память (оперативное запоминающее устройство, ОЗУ) - набор микросхем, предназначенных для временного хранения данных, когда компьютер включен;
  • ПЗУ (постоянное запоминающее устройство) - микросхема, предназначенная для длительного хранения данных, в том числе и когда компьютер выключен;
  • микропроцессорный комплект (чипсет) - набор микросхем, управляющих работой внутренних устройств компьютера и определяющих основные функциональные возможности материнской платы;
  • разъемы для подключения дополнительных устройств (слоты).

(микропроцессор, центральный процессор, CPU) - основная микросхема компьютера, в которой и производятся все вычисления.

Он представляет из себя большую микросхему, которую можно легко найти на материнской плате.

На процессоре устанавливается большой медный ребристый радиатор, охлаждаемый вентилятором.

Конструктивно процессор состоит из ячеек, в которых данные могут не только храниться, но и изменяться.

Внутренние ячейки процессора называют регистрами.

Важно также отметить, что данные, попавшие в некоторые регистры, рассматриваются не как данные, а как команды, управляющие обработкой данных в других регистрах.

Среди регистров процессора есть и такие, которые в зависимости от своего содержания способны модифицировать исполнение команд. Таким образом, управляя засылкой данных в разные регистры процессора, можно управлять обработкой данных.

На этом и основано исполнение программ.

С остальными устройствами компьютера, и в первую очередь с оперативной памятью, процессор связан несколькими группами проводников, называемых шинами.

Основных шин три: шина данных, адресная шина и командная шина.

Адресная шина

У процессоров Intel Pentium (а именно они наиболее распространены в персональных компьютерах) адресная шина 32-разрядная, то есть состоит из 32 параллельных линий. В зависимости от того, есть напряжение на какой-то из линий или нет, говорят, что на этой линии выставлена единица или ноль. Комбинация из 32 нулей и единиц образует 32-разрядный адрес, указывающий на одну из ячеек оперативной памяти. К ней и подключается процессор для копирования данных из ячейки в один из своих регистров.

Шина данных

По этой шине происходит копирование данных из оперативной памяти в регистры процессора и обратно. В компьютерах, собранных на базе процессоров Intel Pentium, шина данных 64-разрядная, то есть состоит из 64 линий, по которым за один раз на обработку поступают сразу 8 байтов.

Шина команд

Для того чтобы процессор мог обрабатывать данные, ему нужны команды. Он должен знать, что следует сделать с теми байтами, которые хранятся в его регистрах. Эти команды поступают в процессор тоже из оперативной памяти, но не из тех областей, где хранятся массивы данных, а оттуда, где хранятся программы. Команды тоже представлены в виде байтов. Самые простые команды укладываются в один байт, однако есть и такие, для которых нужно два, три и более байтов. В большинстве современных процессоров шина команд 32-разрядная (например, в процессоре Intel Pentium), хотя существуют 64-разрядные процессоры и даже 128-разрядные.

В процессе работы процессор обслуживает данные, находящиеся в его регистрах, в поле оперативной памяти, а также данные, находящиеся во внешних портах процессора.

Часть данных он интерпретирует непосредственно как данные, часть данных - как адресные данные, а часть - как команды.

Совокупность всех возможных команд, которые может выполнить процессор над данными, образует так называемую систему команд процессора.

Основными параметрами процессоров являются:

  • рабочее напряжение
  • разрядность
  • рабочая тактовая частота
  • коэффициент внутреннего умножения тактовой частоты
  • размер кэш памяти

Рабочее напряжение процессора обеспечивает материнская плата, поэтому разным маркам процессоров соответствуют разные материнские платы (их надо выбирать совместно). По мере развития процессорной техники происходит постепенное понижение рабочего напряжения.

Разрядность процессора показывает, сколько бит данных он может принять и обработать в своих регистрах за один раз (за один такт).

В основе работы процессора лежит тот же тактовый принцип, что и в обычных часах. Исполнение каждой команды занимает определенное количество тактов.

В настенных часах такты колебаний задает маятник; в ручных механических часах их задает пружинный маятник; в электронных часах для этого есть колебательный контур, задающий такты строго определенной частоты.

В персональном компьютере тактовые импульсы задает одна из микросхем, входящая в микропроцессорный комплект (чипсет), расположенный на материнской плате.

Чем выше частота тактов, поступающих на процессор, тем больше команд он может исполнить в единицу времени, тем выше его производительность.

Обмен данными внутри процессора происходит в несколько раз быстрее, чем обмен с другими устройствами, например с оперативной памятью.

Для того чтобы уменьшить количество обращений к оперативной памяти, внутри процессора создают буферную область - так называемую кэш память.Это как бы «сверхоперативная память».

Когда процессору нужны данные, он сначала обращается в кэш память, и только если там нужных данных нет, происходит его обращение в оперативную память.

Принимая блок данных из оперативной памяти, процессор заносит его одновременно и в кэш память.

«Удачные» обращения в кэш память называют попаданиями в кэш.

Процент попаданий тем выше, чем больше размер кэш памяти, поэтому высокопроизводительные процессоры комплектуют повышенным объемом кэш памяти.

Нередко кэш память распределяют по нескольким уровням.

Кэш первого уровня выполняется в том же кристалле, что и сам процессор, и имеет объем порядка десятков Кбайт.

Кэш второго уровня находится либо в кристалле процессора, либо в том же узле, что и процессор, хотя и исполняется на отдельном кристалле.

Кэш-память первого и второго уровня работает на частоте, согласованной с частотой ядра процессора.

Кэш-память третьего уровня выполняют на быстродействующих микросхемах типа SRAM и размещают на материнской плате вблизи процессора. Ее объемы могут достигать нескольких Мбайт, но работает она на частоте материнской платы.

Шинные интерфейсы материнской платы

Связь между всеми собственными и подключаемыми устройствами материнской платы выполняют ее шины и логические устройства, размещенные в микросхемах микропроцессорного комплекта (чипсета).

От архитектуры этих элементов во многом зависит производительность компьютера.

Шинные интерфейсы

ISA (Industry Standard Architecture) - устаревшая системная шина IBM PC-совместимых компьютеров.

EISA (Extended Industry Standard Architecture) - Расширение стандарта ISA. Отличается увеличенным разъемом и увеличенной производительностью (до 32 Мбайт/с). Как и ISA, в настоящее время данный стандарт считается устаревшим.

PCI (Peripheral Component Interconnect - дословно: взаимосвязь периферийных компонентов) - шина ввода/вывода для подключения периферийных устройств к материнской плате компьютера.

AGP (Accelerated Graphics Port - ускоренный графический порт) - разработанная в 1997 году компанией Intel, специализированная 32-битная системная шина для видеокарты. Основной задачей разработчиков было увеличение производительности и уменьшение стоимости видеокарты, за счет уменьшения количества встроенной видеопамяти.

USB (Universal Serial Bus - универсальная последовательная магистраль) - Этот стандарт определяет способ взаимодействия компьютера с периферийным оборудованием. Он позволяет подключать до 256 различных устройств, имеющих последовательный интерфейс. Устройства могут включаться цепочками (каждое следующее устройство подключается к предыдущему). Производительность шины USB относительно невелика и составляет до 1.5 Мбит/с, но для таких устройств, как клавиатура, мышь, модем, джойстик и тому подобное, этого достаточно. Удобство шины состоит в том, что она практически исключает конфликты между различным оборудованием, позволяет подключать и отключать устройства в «горячем режиме» (не выключая компьютер) и позволяет объединять несколько компьютеров в простейшую локальную сеть без применения специального оборудования и программного обеспечения.

Параметры микропроцессорного комплекта (чипсета) в наибольшей степени определяют свойства и функции материнской платы.

В настоящее время большинство чипсетов материнских плат выпускаются на базе двух микросхем, получивших название «северный мост» и «южный мост».

«Северный мост» управляет взаимосвязью четырех устройств: процессора, оперативной памяти, порта AGP и шины PCI. Поэтому его также называют четырехпортовым контроллером.

«Южный мост» называют также функциональным контроллером. Он выполняет функции контроллера жестких и гибких дисков, функции моста ISA - PCI, контроллера клавиатуры, мыши, шины USB и тому подобное

(RAM - Random Access Memory) - это массив кристаллических ячеек, способных хранить данные.

Существует много различных типов оперативной памяти, но с точки зрения физического принципа действия различают динамическую память (DRAM) и статическую память (SRAM).

Ячейки динамической памяти (DRAM) можно представить в виде микроконденсаторов, способных накапливать заряд на своих обкладках.

Это наиболее распространенный и экономически доступный тип памяти.

Недостатки этого типа связаны, во-первых, с тем, что как при заряде, так и при разряде конденсаторов неизбежны переходные процессы, то есть запись данных происходит сравнительно медленно.

Второй важный недостаток связан с тем, что заряды ячеек имеют свойство рассеиваться в пространстве, причем весьма быстро.

Если оперативную память постоянно не «подзаряжать», утрата данных происходит через несколько сотых долей секунды.

Для борьбы с этим явлением в компьютере происходит постоянная регенерация (освежение, подзарядка) ячеек оперативной памяти.

Регенерация осуществляется несколько десятков раз в секунду и вызывает непроизводительный расход ресурсов вычислительной системы.

Ячейки статической памяти (SRAM) можно представить как электронные микроэлементы - триггеры, состоящие из нескольких транзисторов.

В триггере хранится не заряд, а состояние (включен/выключен), поэтому этот тип памяти обеспечивает более высокое быстродействие, хотя технологически он сложнее и, соответственно, дороже.

Микросхемы динамической памяти используют в качестве основной оперативной памяти компьютера.

Микросхемы статической памяти используют в качестве вспомогательной памяти (так называемой кэш памяти), предназначенной для оптимизации работы процессора.

Каждая ячейка памяти имеет свой адрес, который выражается числом.

Одна адресуемая ячейка содержит восемь двоичных ячеек, в которых можно сохранить 8 бит, то есть один байт данных.

Таким образом, адрес любой ячейки памяти можно выразить четырьмя байтами.

Оперативная память в компьютере размещается на стандартных панельках, называемых модулями.

Модули оперативной памяти вставляют в соответствующие разъемы на материнской плате.

Конструктивно модули памяти имеют два исполнения - однорядные (SIMM-модули) и двухрядные (DIMM-модули).

Основными характеристиками модулей оперативной памяти являются объем памяти и время доступа.

Время доступа показывает, сколько времени необходимо для обращения к ячейкам памяти - чем оно меньше, тем лучше. Время доступа измеряется в миллиардных долях секунды (наносекундах, нс).

Микросхема ПЗУ и система BIOS

В момент включения компьютера в его оперативной памяти нет ничего - ни данных, ни программ, поскольку оперативная память не может ничего хранить без подзарядки ячеек более сотых долей секунды, но процессору нужны команды, в том числе и в первый момент после включения.

Поэтому сразу после включения на адресной шине процессора выставляется стартовый адрес.

Это происходит аппаратно, без участия программ (всегда одинаково).

Процессор обращается по выставленному адресу за своей первой командой и далее начинает работать по программам.

Этот исходный адрес не может указывать на оперативную память, в которой пока ничего нет.

Он указывает на другой тип памяти - постоянное запоминающее устройство (ПЗУ).

Микросхема ПЗУ способна длительное время хранить информацию, даже когда компьютер выключен.

Программы, находящиеся в ПЗУ, называют «зашитыми» - их записывают туда на этапе изготовления микросхемы.

Комплект программ, находящихся в ПЗУ, образует базовую систему ввода-вывода (BIOS - Basic Input Output System).

Основное назначение программ этого пакета состоит в том, чтобы проверить состав и работоспособность компьютерной системы и обеспечить взаимодействие с клавиатурой, монитором, жестким диском и дисководом гибких дисков.

Программы, входящие в BIOS, позволяют нам наблюдать на экране диагностические сообщения, сопровождающие запуск компьютера, а также вмешиваться в ход запуска с помощью клавиатуры.

Энергонезависимая память CMOS

Работа таких стандартных устройств, как клавиатура, может обслуживаться программами, входящими в BIOS, но такими средствами нельзя обеспечить работу со всеми возможными устройствами.

Так, например, изготовители BIOS абсолютно ничего не знают о параметрах наших жестких и гибких дисков, им не известны ни состав, ни свойства произвольной вычислительной системы.

Для того чтобы начать работу с другим оборудованием, программы, входящие в состав BIOS, должны знать, где можно найти нужные параметры.

По очевидным причинам их нельзя хранить ни в оперативной памяти, ни в постоянном запоминающем устройстве.

Специально для этого на материнской плате есть микросхема «энергонезависимой памяти», по технологии изготовления называемая CMOS.

От оперативной памяти она отличается тем, что ее содержимое не стирается во время выключения компьютера, а от ПЗУ она отличается тем, что данные в нее можно заносить и изменять самостоятельно, в соответствии с тем, какое оборудование входит в состав системы.

Эта микросхема постоянно подпитывается от небольшой батарейки, расположенной на материнской плате.

Заряда этой батарейки хватает на то, чтобы микросхема не теряла данные, даже если компьютер не будут включать несколько лет.

В микросхеме CMOS хранятся данные о гибких и жестких дисках, о процессоре, о некоторых других устройствах материнской платы.

Тот факт, что компьютер четко отслеживает время и календарь (даже и в выключенном состоянии), тоже связан с тем, что показания системных часов постоянно хранятся (и изменяются) в CMOS.

Таким образом, программы, записанные в BIOS, считывают данные о составе оборудования компьютера из микросхемы CMOS, после чего они могут выполнить обращение к жесткому диску, а в случае необходимости и к гибкому, и передать управление тем программам, которые там записаны.

Жесткий диск

Жесткий диск - основное устройство для долговременного хранения больших объемов данных и программ.

На самом деле это не один диск, а группа соосных дисков, имеющих магнитное покрытие и вращающихся с высокой скоростью.

Таким образом, этот «диск» имеет не две поверхности, как должно быть у обычного плоского диска, а 2n поверхностей, где n - число отдельных дисков в группе.

Над каждой поверхностью располагается головка, предназначенная для чтения-записи данных.

При высоких скоростях вращения дисков (90 об/с) в зазоре между головкой и поверхностью образуется аэродинамическая подушка, и головка парит над магнитной поверхностью на высоте, составляющей несколько тысячных долей миллиметра.

При изменении силы тока, протекающего через головку, происходит изменение напряженности динамического магнитного поля в зазоре, что вызывает изменения в стационарном магнитном поле ферромагнитных частиц, образующих покрытие диска.Так осуществляется запись данных на магнитный диск.

Операция считывания происходит в обратном порядке.

Намагниченные частицы покрытия, проносящиеся на высокой скорости вблизи головки, наводят в ней ЭДС самоиндукции.

Электромагнитные сигналы, возникающие при этом, усиливаются и передаются на обработку.

Управление работой жесткого диска выполняет специальное аппаратно-логическое устройство - контроллер жесткого диска.

В настоящее время функции контроллеров дисков выполняют микросхемы, входящие в микропроцессорный комплект (чипсет), хотя некоторые виды высокопроизводительных контроллеров жестких дисков по-прежнему поставляются на отдельной плате.

К основным параметрам жестких дисков относятся емкость и производительность.

На жестком диске может храниться годами, однако иногда требуется ее перенос с одного компьютера на другой.

Несмотря на свое название, жесткий диск является весьма хрупким прибором, чувствительным к перегрузкам, ударам и толчкам.

Теоретически, переносить информацию с одного рабочего места на другое путем переноса жесткого диска возможно, и в некоторых случаях так и поступают, но все-таки этот прием считается нетехнологичным, поскольку требует особой аккуратности и определенной квалификации.

Для оперативного переноса небольших объемов информации используют так называемые гибкие магнитные диски (дискеты), которые вставляют в специальный накопитель - дисковод.

Приемное отверстие накопителя находится на лицевой панели системного блока.

Начиная с 1984 года выпускались гибкие диски 5.25 дюйма высокой плотности (1.2 Мбайт).

В наши дни диски размером 5.25 дюйма не используются, и соответствующие дисководы в базовой конфигурации персональных компьютеров после 1994 года не поставляются.

Гибкие диски размером 3.5 дюйма выпускают с 1980 года.

Сейчас стандартными считают диски размером 3.5 дюйма высокой плотности. Они имеют емкость 1440 Кбайт (1.4 Мбайт) и маркируются буквами HD (high density - высокая плотность).

С нижней стороны гибкий диск имеет центральную втулку, которая захватывается шпинделем дисковода и приводится во вращение.

Магнитная поверхность прикрыта сдвигающейся шторкой для защиты от влаги, грязи и пыли.

Если на гибком диске записаны ценные данные, его можно защитить от стирания и перезаписи, сдвинув защитную задвижку так, чтобы образовалось открытое отверстие.

Гибкие диски считаются малонадежными носителями информации.

Пыль, грязь, влага, температурные перепады и внешние электромагнитные поля очень часто становятся причиной частичной или полной утраты данных, хранившихся на гибком диске.

Поэтому использовать гибкие диски в качестве основного средства хранения информации недопустимо.

Их используют только для транспортировки информации или в качестве дополнительного (резервного) средства хранения.

Дисковод компакт-дисков CD-ROM

Аббревиатура CD-ROM (Compact Disc Read-Only Memory) переводится на русский язык как постоянное запоминающее устройство на основе компакт-диска.

Принцип действия этого устройства состоит в считывании числовых данных с помощью лазерного луча, отражающегося от поверхности диска.

Цифровая запись на компакт-диске отличается от записи на магнитных дисках очень высокой плотностью, и стандартный компакт-диск может хранить примерно 650 Мбайт данных.

Большие объемы данных характерны для мультимедийной информации (графика, музыка, видео), поэтому дисководы CD-ROM относят к аппаратным средствам мультимедиа.

Программные продукты, распространяемые на лазерных дисках, называют мультимедийными изданиями.

Сегодня мультимедийные издания завоевывают все более прочное место среди других традиционных видов изданий.

Так, например, существуют книги, альбомы, энциклопедии и даже периодические издания (электронные журналы), выпускаемые на CD-ROM.

Основным недостатком стандартных дисководов CD-ROM является невозможность записи данных, но параллельно с ними существуют и устройства однократной записи CD-R (Compact Disk Recorder), и устройства многократной записи CD-RW.

Основным параметром дисководов CD-ROM является скорость чтения данных.

В настоящее время наибольшее распространение имеют устройства чтения CD-ROM с производительностью 32х-50х. Современные образцы устройств однократной записи имеют производительность 4х-8х, а устройств многократной записи - до 4х.

Для начала расставим все точки над "i" и разберёмся в терминологии.

Электродинамический громкоговоритель, динамический громкоговоритель, динамик, динамическая головка прямого излучения – это разнообразные названия одного и того же прибора служащего для преобразования электрических колебаний звуковой частоты в колебания воздуха, которые и воспринимаются нами как звук.

Звуковые динамики или по-другому динамические головки прямого излучения вы не раз видели. Они активно применяются в бытовой электронике. Именно громкоговоритель преобразует электрический сигнал на выходе усилителя звуковой частоты в слышимый звук.

Стоит отметить, что КПД (коэффициент полезного действия) звукового динамика очень низкий и составляет около 2 – 3%. Это, конечно, огромный минус, но до сих пор ничего лучше не придумали. Хотя стоит отметить, что кроме электродинамического громкоговорителя существуют и другие приборы для преобразования электрических колебаний звуковой частоты в акустические колебания. Это, например, громкоговорители электростатического, пьезоэлектрического, электромагнитного типа, но широкое распространение и применение в электронике получили громкоговорители электродинамического типа.

Как устроен динамик?

Чтобы понять, как работает электродинамический громкоговоритель, обратимся к рисунку.

Динамик состоит из магнитной системы – она расположена с тыльной стороны. В её состав входит кольцевой магнит . Он изготавливается из специальных магнитных сплавов или же магнитной керамики. Магнитная керамика – это особым образом спрессованные и «спечённые» порошки, в составе которых присутствуют ферромагнитные вещества – ферриты. Также в магнитную систему входят стальные фланцы и стальной цилиндр, который называют керном . Фланцы, керн и кольцевой магнит формируют магнитную цепь.

Между керном и стальным фланцем имеется зазор, в котором образуется магнитное поле. В зазор, который очень мал, помещается катушка. Катушка представляет собой жёсткий цилиндрический каркас, на который намотан тонкий медный провод. Эту катушку ещё называют звуковой катушкой . Каркас звуковой катушки соединяется с диффузором – он то и «толкает» воздух, создавая сжатия и разряжения окружающего воздуха – акустические волны.

Диффузор может выполняться из разных материалов, но чаще его делают из спрессованной или отлитой бумажной массы. Технологии не стоят на месте и в ходу можно встретить диффузоры из пластмассы, бумаги с металлизированным покрытием и других материалов.

Чтобы звуковая катушка не задевала за стенки керна и фланец постоянного магнита её устанавливают точно в середине магнитного зазора с помощью центрирующей шайбы . Центрирующая шайба гофрирована. Именно благодаря этому звуковая катушка может свободно двигаться в зазоре и при этом не касаться стенок керна.

Диффузор укреплён на металлическом корпусе – корзине . Края диффузора гофрированы, что позволяет ему свободно колебаться. Гофрированные края диффузора формируют так называемый верхний подвес , а нижний подвес – это центрирующая шайба.

Тонкие провода от звуковой катушки выводятся на внешнюю сторону диффузора и крепятся заклёпками. А с внутренней стороны диффузора к заклёпкам крепится многожильный медный провод. Далее эти многожильные проводники припаиваются к лепесткам, которые закреплены на изолированной от металлического корпуса пластинке. За счёт контактных лепестков, к которым припаяны многожильные выводы звуковой катушки, динамик подключается к схеме.

Как работает динамик?

Если пропустить через звуковую катушку динамика переменный электрический ток, то магнитное поле катушки будет взаимодействовать с постоянным магнитным полем магнитной системы динамика. Это заставит звуковую катушку либо втягиваться внутрь зазора при одном направлении тока в катушке, либо выталкиваться из него при другом. Механические колебания звуковой катушки передаются диффузору, который начинает колебаться в такт с частотой переменного тока, создавая при этом акустические волны.

Обозначение динамика на схеме.

Условное графическое обозначение динамика имеет следующий вид.

Рядом с обозначением пишутся буквы B или BA , а далее порядковый номер динамика в принципиальной схеме (1, 2, 3 и т.д.). Условное изображение динамика на схеме очень точно передаёт реальную конструкцию электродинамического громкоговорителя.

Основные параметры звукового динамика.

Основные параметры звукового динамика, на которые следует обращать внимание:

    Но кроме активного сопротивления звуковая катушка обладает ещё и реактивным сопротивлением. Реактивное сопротивление образуется потому, что звуковая катушка, это, по сути, обычная катушка индуктивности и её индуктивность оказывает сопротивление переменному току. Реактивное сопротивление зависит от частоты переменного тока.

    Активное и реактивное сопротивление звуковой катушки образует полное сопротивление звуковой катушки. Оно обозначается буквой Z (так называемый, импеданс ). Получается, что активное сопротивление катушки не меняется, а реактивное сопротивление меняется в зависимости от частоты тока. Чтобы внести порядок реактивное сопротивление звуковой катушки динамика измеряют на фиксированной частоте 1000 Гц и прибавляют к этой величине активное сопротивление катушки.

    В итоге получается параметр, который и называется номинальное (или полное) электрическое сопротивление звуковой катушки. Для большинства динамических головок эта величина составляет 2, 4, 6, 8 Ом. Также встречаются динамики с полным сопротивлением 16 Ом. На корпусе импортных динамиков, как правило, указывается эта величина, например, вот так – или 8 Ohm .

    Стоит отметить тот факт, что полное сопротивление катушки где-то на 10 – 20% больше активного. Поэтому определить его можно достаточно просто. Нужно всего лишь измерить активное сопротивление звуковой катушки омметром и увеличить полученную величину на 10 – 20%. В большинстве случаев можно вообще учитывать только чисто активное сопротивление.

    Номинальное электрическое сопротивление звуковой катушки является одним из важных параметров, так как его необходимо учитывать при согласовании усилителя и нагрузки (динамика).

    Диапазон частот – это полоса звуковых частот, которые способен воспроизвести динамик. Измеряется в герцах (Гц). Напомним, что человеческое ухо воспринимает частоты в диапазоне 20 Гц – 20 кГц. И, это только очень хорошее ухо:).

    Никакой динамик не способен точно воспроизвести весь слышимый частотный диапазон. Качество звуковоспроизведения будет всё-равно отличаться от того, что требуется.

    Поэтому слышимый диапазон звуковых частот условно разделили на 3 части: низкочастотную (НЧ ), среднечастотную (СЧ ) и высокочастотную (ВЧ ). Так, например, НЧ-динамики лучше всего воспроизводят низкие частоты – басы, а высокочастотные – «писк» и «звон» – их поэтому и называют пищалками. Также, есть и широкополосные динамики. Они воспроизводят практически весь звуковой диапазон, но качество воспроизведения у них среднее. Выигрываем в одном – перекрываем весь диапазон частот, проигрываем в другом – в качестве. Поэтому широкополосные динамики встраивают в радиоприёмники, телевизоры и прочие устройства, где порой не требуется получить высококачественный звук, а нужна лишь чёткая передача голоса и речи.

    Для качественного воспроизведения звука НЧ, СЧ и ВЧ-динамики объединяются в едином корпусе, снабжаются частотными фильтрами. Это акустические системы. Так как каждый из динамиков воспроизводит только свою часть звукового диапазона, то суммарная работа всех динамиков значительно увеличивает качество звука.

    Как правило, низкочастотные динамики рассчитаны на воспроизведение частот от 25 Гц до 5000 Гц. НЧ-динамики обычно имеют диффузор большого диаметра и массивную магнитную систему.

    Динамики СЧ рассчитаны на воспроизведение полосы частот от 200 Гц до 7000 Гц. Габариты их чуть меньше НЧ-динамиков (зависит от мощности).

    Высокочастотные динамики прекрасно воспроизводят частоты от 2000 Гц до 20000 Гц и выше, вплоть до 25 кГц. Диаметр диффузора у таких динамиков, как правило, небольшой, хотя магнитная система может быть достаточно габаритная.

    Номинальная мощность (Вт) – это электрическая мощность тока звуковой частоты, которую можно подвести к динамику без угрозы его порчи или повреждения. Измеряется в ваттах (Вт ) и милливаттах (мВт ). Напомним, что 1 Вт = 1000 мВт. Подробнее о сокращённой записи числовых величин можно прочесть .

    Величина мощности, на которую рассчитан конкретный динамик, может быть указана на его корпусе. Например, вот так – 1W (1 Вт).

    Это значит, что такой динамик можно легко использовать совместно с усилителем, выходная мощность которого не превышает 0,5 – 1 Вт. Конечно, лучше выбирать динамик с некоторым запасом по мощности. На фото также видно, что указано номинальное электрическое сопротивление – (4 Ом).

    Если подать на динамик мощность большую той, на которую он рассчитан, то он будет работать с перегрузкой, начнёт «хрипеть», искажать звук и вскоре выйдет из строя.

    Вспомним, что КПД динамика составляет около 2 – 3%. А это значит, что если к динамику подвести электрическую мощность в 10 Вт, то в звуковые волны он преобразует лишь 0,2 – 0,3 Вт. Довольно немного, правда? Но, человеческое ухо устроено весьма изощрённо, и способно услышать звук, если излучатель воспроизводит акустическую мощность около 1 – 3 мВт на расстоянии от него в несколько метров. При этом к излучателю – в данном случае динамику – нужно подвести электрическую мощность в 50 – 100 мВт. Поэтому, не всё так плохо и для комфортного озвучивания небольшой комнаты вполне достаточно подвести к динамику 1 – 3 Вт электрической мощности.

Это всего лишь три основных параметра динамика. Кроме них ещё есть такие, как уровень чувствительности, частота резонанса, амплитудно-частотная характеристика (АЧХ), добротность и др.

Планировал написать серию полезных статей для новичков о том, как выбрать и приобрести компьютер нужной конфигурации (а также планшет) и для решения определённых задач: работа, учёба, игры, работа с графикой. Перед тем как затронуть непосредственно выбор домашнего компьютера или ноутбука для решения своих задач, правильнее будет сначала объяснить новичкам, из чего вообще состоит компьютер… Поэтому в данной статье я расскажу об основных компонентах типичного домашнего (стационарного) компьютера для того, чтобы вы имели представление как он устроен, как выглядит тот или иной компонент, какие имеет характеристики и за что отвечает. Вся эта информация может пригодиться простым начинающим пользователям при выборе и покупке компьютера… Под «Основными» я имел ввиду те компоненты (комплектующие), которые вынимаются и подлежат простой замене. Проще говоря, я не буду заходить слишком далеко и рассказывать в детальных подробностях, как работает компьютер, объясняя каждый элемент на платах и внутреннее устройство каждого компонента. Данный блог читает очень много новичков, и я считаю, что сразу говорить обо всех сложных процессах и терминах – это не есть хорошо и просто вызовет кашу в голове:)

Итак, переходим к рассмотрению комплектующих любого на примере обычного домашнего компьютера. В ноутбуках и нетбуках вы сможете найти всё тоже самое, просто в гораздо уменьшенном варианте.

Из каких основных компонентов состоит компьютер?

    Процессор . Это мозг компьютера. Он является главным компонентом и производит все вычисления в компьютере, контролирует все операции и процессы. Также является одним из самых дорогих компонентов, и цена очень хорошего современного процессора может переваливать за 50 000 рублей.

    Бывают процессоры фирмы Intel и AMD. Тут кому что нравится, а так, Интелы меньше нагреваются, потребляют меньше электроэнергии. При всём этом у AMD лучше идёт обработка графики, т.е. больше подошёл бы для игровых компьютеров и тех, где работа будет вестись с мощными редакторами изображений, 3D графики, видео. На мой взгляд эта разница между процессорами не столь существенна и заметна…

    Основной характеристикой является частота процессора (измеряется в Герцах. Например 2.5GHz), а также – разъём для подключения к материнской плате (сокет. Например, LGA 1150).

    Вот так выглядит процессор (сверху указана фирма и модель):

    Материнская (системная) плата . Эта самая большая плата в компьютере, которая является связующим звеном между всеми остальными компонентами. К материнской плате подключаются все остальные устройства, включая периферийные. Производителей материнских плат множество, а на верхушке держатся ASUS и Gigabyte, как самые надёжные и одновременно дорогие, соответственно. Основными характеристиками являются: тип поддерживаемого процессора (сокет), тип поддерживаемой оперативной памяти (DDR2, DDR3, DDR4), форм фактор (определяет в какой корпус вы сможете поместить данную плату), а также – типы разъёмов для подключения остальных компонентов компьютера. Например, современные жесткие диски (HDD) и диски SSD подключаются через разъёмы SATA3, видеоадаптеры – через разъёмы PCI-E x16 3.0.

    Вот так выглядит материнская плата:

    Память . Тут разделим её на 2 основных типа, на которые важно будет обратить внимание при покупке:


  1. Видеокарта (видеоадаптер или «видюха», как называют её более-менее продвинутые пользователи компьютеров). Это устройство отвечает за формирование и вывод изображения на экран монитора или любого другого аналогичного подключенного устройства. Видеокарты бывают встроенными (интегрированными) и внешними (дискретными). Встроенная видеокарта на сегодняшний день имеется в подавляющем большинстве материнских плат и визуально мы видим лишь её выход – разъём для подключения монитора. Внешняя видеокарта подключается к плате отдельно в виде ещё одной платы со своей системой охлаждения (радиатор или вентилятор).

    Какая разница между ними, спросите вы? Разница в том, что встроенная видеокарта не предназначена для запуска ресурсоёмких игр, работы в профессиональных редакторах изображения и видео. Ей просто не хватит мощности для обработки такой графики и всё будет сильно тормозить. Встроенная видюха на сегодняшний день может использоваться скорее как запасной временный вариант. Для всего остального нужна хоть какая-то простенькая внешняя видеокарта и какая именно уже зависит от предпочтений пользования компьютером: для интернет-сёрфинга, работы с документами или же для игр.

    Основной характеристикой видеокарты является: разъём для подключения к плате, частота графического процессора (чем она больше, тем лучше), объём и тип видеопамяти, разрядность шины видеопамяти.

    Вот так выглядит видеокарта:

    Звуковой адаптер . В каждом компьютере имеется, как минимум, встроенная звуковая карта и отвечает, соответственно, за обработку и вывод звука. Очень часто именно встроенная и далеко не все покупают себе дискретную звуковую карту, которая подключается к материнской плате. Лично мне, например, встроенной вполне достаточно и на этот компонент компьютера я, в принципе, и внимания вообще не обращаю. Дискретная звуковая карта будет выдавать намного качественнее звук и незаменима если вы занимаетесь музыкой, работаете в каких-либо программах для обработки музыки. А если ничем подобным не увлекаетесь, то можно спокойно пользоваться встроенной и не задумываться об этом компоненте при покупке.

    Вот так выглядит дискретная звуковая карта:

    Сетевой адаптер . Служит для подключения компьютера к внутренней сети и к интернету. Также, как и звуковой адаптер, очень часто может быть встроенным, чего многим достаточно. Т.е. в таком случае в компьютере вы не увидите дополнительной платы сетевого адаптера. Основной характеристикой является пропускная способность, измеряемая в Мбит / сек. Если на материнской плате имеется встроенный сетевой адаптер, а он, как правило, имеется в подавляющем большинстве материнских плат, то и новый покупать для дома не за чем. Определить его наличие на плате можно по разъёму для подключения интернет-кабеля (витая пара). Если такой разъём имеется, значит в плате есть встроенный сетевой адаптер, соответственно.

    Вот так выглядит дискретная сетевая карта:

    Блок питания (БП) . Очень важный компонент компьютера. Он подключается к электросети и служит для снабжения постоянным током всех других компонентов компьютера, преобразуя сетевое напряжения до требуемых значений. А устройства компьютера работают на напряжениях: +3.3В, +5В, +12В. Отрицательные напряжения практически не используются. Основной характеристикой блока питания является его мощность и измеряется, соответственно, в Ваттах. В компьютер ставится блок питания с такой мощностью, чтобы её хватило для питания всех компонентов компьютера. Больше всего будет потреблять видеоадаптер (потребляемая им мощность будет обязательно указана в документации), поэтому ориентироваться нужно на него и брать просто с небольшим запасом. Также блок питания должен иметь все необходимые разъёмы для подключения ко всем имеющимся компонентам компьютера: материнской плате, процессору, HDD и SSD дискам, видеоадаптеру, дисководу.

    Вот так выглядит блок питания:

    Дисковод (привод) . Это уже дополнительное устройство, без которого, в принципе, можно и вообще обойтись. Служит, соответственно, для чтения CD/DVD/Blu-Ray дисков. Если планируется на компьютере читать или записывать какие-либо диски, то, конечно же, такое устройство необходимо. Из характеристик можно отметить только способность дисковода читать и записывать различные типы дисков, а также разъём для подключения к плате, который на сегодняшний день практически всегда – SATA.

    Вот так выглядит дисковод:

Всё что перечислено выше – основное, без чего, как правило, не обходится ни один компьютер. В ноутбуках всё аналогично, только часто может отсутствовать дисковод, но это уже зависит от того, какую модель вы выбираете и нужен ли вам вообще этот дисковод. Также могут быть и другие компоненты, которые тоже будут подключаться к материнской плате, например: Wi-Fi адаптер, TV тюнер, устройства для видео захвата. Могут быть и другие дополнительные компоненты, которые являются совсем не обязательными, поэтому останавливаться на них пока что не будем. Сейчас практически в каждом ноутбуке имеется Wi-Fi адаптер для подключения к интернету по беспроводной сети, а также бывает и встроенный TV-тюнер. В стационарных домашних компьютерах, всё это приобретается, как правило, отдельно!

Корпус компьютера

Все те основные компоненты, которые я перечислил выше, должны быть где-то расположены, а не просто валяться на полу, верно? :) Все компоненты компьютера помещаются в специальный корпус (системный блок) для того чтобы исключить на них внешнее воздействие, защитить от повреждений и поддерживать внутри корпуса нужную температуру за счёт имеющихся в нём вентиляторов. Также запускаете вы свой компьютер именно при помощи кнопки на корпусе, поэтому без корпуса никак не обойтись:)

Корпуса бывают разного размера и в самый маленький корпус, понятное дело, не поместится, например, стандартная материнская плата. Поэтому основной характеристикой корпуса является формфактор поддерживаемых материнских плат. Если Самые большие корпуса (Full Tower) способны вместить в себя платы любого размера и любые компоненты так, что ещё и будет более-менее свободно и в случае необходимости вынуть какой-либо из компонентов, не возникнет неудобств.

Вот так выглядит корпус компьютера:

Монитор

Также, уже вне корпуса, будет расположено ещё одно важное устройство – монитор. Монтитор подключается проводом к материнской плате и без него вы, соответственно, не увидите всего что делаете на компьютере:) Основными параметрами монитора являются:

    Диагональ экрана в дюймах;

    Поддерживаемое разрешение экрана, например, 1920×1080. Чем оно больше, тем лучше;

    Угол обзора. Влияет на то, как будет видно изображение если смотреть на монитор со стороны или чуть выше / ниже. Чем больше угол обзора, тем лучше.

    Яркость и контрастность. Яркость измеряется в кд/м2 и в хороших моделях лежит за пределами 300, а контрастность должна быть не менее 1:1000 для хорошего отображения.

Вот так выглядит монитор:

Помимо перечисленных выше основных компонентов компьютера, существуют ещё и периферийные устройства. Периферией называют различные дополнительные и вспомогательные устройства, которые позволяют расширить возможности компьютера. Сюда относится множество устройств, например: компьютерная мышь, клавиатура, наушники, микрофон, принтер, сканер, копир, графический планшет, джойстик, web-камера.

Все эти устройства уже удобно будет затронуть в отдельных темах, поскольку каждое из них имеет свои характеристики и особенности. Клавиатуру и мышь выбрать проще всего, главное, чтобы подключение к компьютеру было по USB или же вообще по радиоканалу без провода, а все остальные параметры подбираются уже индивидуально и здесь главное, чтобы просто было удобно.

О выборе самых основных периферийных устройств читайте в статье:

На этом разбор компонентов компьютера я заканчиваю. Надеюсь, что подобная статья окажется для новичков в какой-то степени полезной и те, кто совсем не понимали, что находится в компьютере и для чего нужно, теперь смогу более-менее представить себе:) Также данная информация, я думаю, станет полезна при выборе компьютера и тем более последующие статьи как раз будут о выборе и покупке домашнего компьютера.

Всем хорошего дня! Пока;)

Что такое компьютер . Компьютер, как следует из его названия (на английском слово computer произошло от слова compute – считать, вычислять) – это вычислительное устройство . На самом деле, кроме как считать, считать много и быстро компьютер ничего более и не умеет. Различные периферийный устройства вывода, такие как монитор, принтер, аудио аппаратура, веб-камера и т.п. просто способны по-разному результаты этих вычислений преобразовывать в понятные нам сигналы. Различные устройства ввода (клавиатура, манипуляторы, планшеты и т.д.) занимаются обратной задачей: преобразованием внешних воздействий в понятные компьютеру наборы команд и данных. То, без чего компьютер просто не может существовать – это центральный процессор и запоминающее устройство (память компьютера). Первое умеет считать, а второе – хранить исходные данные и результаты вычислений. Компьютер производит вычисления по заранее заложенной в него программе. Программы пишут люди, а дело компьютера – их выполнять. Об этом чуть более подробно в конце материала, а сейчас вкратце о том, в каком виде компьютер воспринимает информацию.

Часть 1. Особенности представления информации в компьютере

Минимальной единицей информации для компьютера является один бит , который может принимать два значения. Одно из значений считают равным 1, а другое 0. На уровне “железа” (аппаратной части компьютера) единица информации представлена триггерами – классом электронных устройств, которые обладают возможностью длительно оставаться в одном из двух состояний. Значение выходного напряжения таких электронных устройств может иметь два значения, одно из которых ассоциируют с нулем, а другое с единицей. Если бы на базе полупроводников можно было легко и эффективно создавать электронные устройства, способные подолгу находиться, например, в трех или четырех состояниях, то и битом тогда считали бы единицу информации, принимающую три и более разных значений. Поскольку все же современные компьютеры построены на базе триггеров, то и система счисления в них используется двоичная.

Что такое система счисления . Система счисления – это способ представления числовой информации, определяемый набором символов. Для нас привычной является десятичная система счисления, представленная набором цифр от 0 до 9. Компьютеру для представления информации достаточно двух символов: 0 и 1. Почему это так - я попытался ответить чуть выше, когда описывал природу триггеров – аппаратной основы современных компьютеров. Как представляются числа в различных системах счисления, я покажу на примере десятичной, двоичной и шестнадцатеричной систем. Последняя широко используется в низкоуровневом программировании, поскольку более компактна, чем двоичная, а числа, представленные в 16-ричной легко перевести в 2-ю и наоборот.

Десятичная система счисления “СИ10”: {0,1,2,3,4,5,6,7,8,9}. Двоичная система счисления “СИ2”: {0,1} Шестнадцатеричная система счисления “СИ16”: {0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F} (для обозначения чисел 10, 11, 12, 13, 14 и 15 используются символы A, B, C, D, E и F)

Итак, пример: рассмотрим, как представляется число 100 с использованием этих систем.

“СИ10”: 100=1*100 +0*10+0*1 “СИ2” : 01100100=0*128+1*64 +1*32 +0*16+0*8+1*4 +0*2+0*1 “СИ16”: 64=6*16+4*1

Все это различные позиционные системы счисления с разным основанием . Позиционными системами счисления называют те системы, в которых вклад в общую сумму от каждого разряда определяется не только значением этого разряда, но и его позицией. Примером не позиционной системы счисления является римская система с ее L,X,V,I. Получаем, что значение числа, которое обозначается в позиционной системе счисления с определенным основанием, вычисляется следующим образом:

N=D 0 *B 0 +D 1 *B 1 +…+D n-1 *B n-1 +D n *B n , где D i – величина разряда на i-м месте, начиная с 0, а B – основание системы счисления. Не забываем, что B 0 =1.

Как перевести число из шестнадцатеричной системы в двоичную и наоборот . Все просто, каждый разряд в 16-ричной системы переводите в 4 разряда двоичной системы и записывайте результат последовательно хоть слева направо, хоть справа налево. Наоборот: разбиваете двоичное число на тетрады (по 4 разряда строго справа налево) и каждую тетраду отдельно заменяете на один из символов 16-ричной системы счисления. Если последняя тетрада оказалась неполной, до дополняете ее нулями слева. Пример:

1010111100110 -> 0001(1).0101(5).1110(14).0110(6) -> 15E6

Для того, чтобы быстро умножить или разделить число на основание системы счисления, достаточно просто сдвинуть все разряды влево (умножение) и вправо (деление). Умножение на 2 в двоичной системе счисления называют сдвигом влево (в конце добавляется 0), а целочисленное деление на 2 – сдвигом вправо (последний символ убирается). Пример:

11011(27) > 1101(13)

Единицы информации компьютера . С минимальной единицей информации в вычислительной технике разобрались – это бит. Но минимальным адресуемым набором информации является не бит, а байт – набор информации, представленный 8-ю битами и, как следствие, способный хранить 256 (2 8) различных значений. Что значит минимальный адресуемый набор информации ? Это значит, что вся память компьютера поделена на участки, каждый из которых имеет свой адрес (порядковый номер). Минимальный размер такого участка – байт. Я, конечно, упрощаю картину, но на данный момент такого представления достаточно. Почему именно 8 бит? Так сложилось исторически, а впервые 8-ми битовая (байтовая) адресация была применена в вычислительных машинах компании IBM. Наверное, сочли удобным, что единицу информации легко представить ровно двумя символами шестнадцатеричной системы счисления. А теперь развеем мифы насчет объемов данных, обозначаемых практически всем знакомыми словами килобайт , мегабайт , гигабайт , терабайт и т.д.

1 килобайт (кб) = 2 10 байт = 1024, а не 1000 байт. 1 мегабайт (мб) = 2 20 байт = 1048576 байт = 1024 килобайт, а не 1000.000 байт. 1 гигабайт (гб) = 2 30 байт, 1 терабайт (тб) = 2 40 байт и т.д.

Часть 2. Устройство компьютера

Как устроен компьютер . Или из чего состоит компьютер . Дальнейшее повествование будет построено следующим образом. Описание устройства компьютера будет представлено на различных уровнях. На первом уровне я обозначу основные составляющие современного компьютера, на втором и последующих уровнях буду более детально описывать каждую его часть. Для быстрого поиска нужной вам информации пользуйтесь следующей навигацией.

Уровень 1. Общее устройство компьютера

Системный блок

Системный блок компьютера – это тот самый ящик, из которого торчит шнур питания, к которому подключены монитор, клавиатура, мышь и принтер, и в который вставляют компакт диски, флешки и прочие внешние устройства. Можно сказать, что все устройства, которые подключены к системному блоку извне являются периферийными устройствами – выполняющими второстепенные задачи компьютера. Ну а в самом системном блоке находится все самое ценное и необходимое: блок питания, системная материнская плата и центральное процессорное устройство (центральный процессор) - “мозги” компьютера. А также, модули управления периферийными устройствами (контроллеры), видео и звуковая карты, сетевая карта и модем, транспортные магистрали для передачи информации (шины) и много еще чего полезного. Тем не менее, все это в первую очередь справедливо для домашних и офисных компьютеров. Например, глядя на ноутбук, сложно сказать, где у него заканчивается системный блок, и начинаются периферийные устройства. Все это деление условно, тем более что есть еще и коммуникаторы, планшетные компьютеры и прочие портативные вычислительные устройства.

К этой категории относят все устройства, которые позволяют вводить информацию в компьютер. Например, клавиатура, мышь, джойстик, веб камера и сенсорный экран позволяют это делать человеку, а устройство чтения компакт-дисков или карты памяти просто считывает информацию с внешнего носителя автоматически. К устройствам ввода чаще относят только средства ввода информации человеком, а все остальные называют приводами внешних носителей данных .

Это устройства, которые предназначены для вывода результатов вычислений компьютера. Монитор выводит информацию в графическом электронном виде, принтер делает практически то же самое, но на бумаге, а аудио система воспроизводит информацию в виде звуков. Все это средства обратной связи с человеком в ответ на ввод им информации через устройства ввода.

Прочие устройства

К этой категории можно отнести любые подключаемые к компьютеру устройства от флеш карт и портативных жестких дисков, до модемов (в том числе wi-fi), роутеров и т.п. Классифицировать устройства – дело неблагодарное, поскольку делать это можно абсолютно по-разному, и всегда можешь оказаться прав. Например, встроенный модем сложно отнести к периферийным устройствам, хотя внешний модем выполняет абсолютно те же функции. Модем – это устройство для организации связи между компьютерами, и абсолютно не важно, где он находится. То же самое можно сказать про сетевую карту. Жесткий диск – это, прежде всего, энергонезависимое запоминающее устройство, которое может быть как внутренним, так и внешним. Приведенная выше классификация оборудования компьютера опирается в первую очередь на физическое месторасположения того или иного устройства в классическом персональном компьютере и только потом на его назначение. Это всего лишь один из способов классификации и не более того.

Уровень 2. Начинка системного блока современного компьютера

Для начала пару слов о быстродействии компьютера . Это свойство характеризуется тактовой частотой и производительностью системы. Чем они выше – тем быстрее работает компьютер, но это не синонимы. Производительность любого компонента системы – это количество выполняемых им элементарных операций в секунду. Тактовая частота – это частота синхронизирующих импульсов, подаваемых на вход системы генератором тактовых импульсов, что, в свою очередь, и определяет количество выполняемых последовательно операций за единицу времени. Но производительность можно увеличить, обеспечив возможность выполнять элементарные операции параллельно при той же тактовой частоте, примером чего является многоядерная архитектура центрального процессора. Таким образом, нужно оценивать не только тактовую частоту, с которой работает процессор, но и его архитектуру.

Теперь о компонентах компьютера. С корпусом и блоком питания, я думаю, все понятно и без комментариев. Системная материнская плата и центральный процессор – это сердце компьютера и именно они занимаются управлением процессами вычислений. О них более подробный рассказ чуть ниже. Шины – это средство передачи информации между различными устройствами компьютера. Шины делятся на шины управления , которые передают коды команд; адресные шины , которые, как следует из их названия, служат для передачи адреса определенного контекстом команды набора аргументов или адреса, куда следует поместить результат; и шины данных , которые передают, непосредственно, сами данные - аргументы и результаты выполнения команд. Контроллеры – это микропроцессорные устройства, предназначенные для управления жесткими дисками, приводами внешних носителей информации и прочими видами устройств. Контроллеры – это посредники между инфраструктурой центрального процессора и конкретным устройством, подключенным к компьютеру. Жесткий диск – это энергонезависимое устройство хранения информации. Энергонезависимость запоминающего устройства – это его способность не утрачивать информацию после отключения питания. Помимо пользовательских данных, жесткий диск содержит программный код операционной системы, включая драйверы различных устройств. Драйвер устройства – это программа, управляющая его контроллером. Операционная система, например, Microsoft Windows, управляет всеми устройствами посредством драйверов, которые имеют понятный ей программный интерфейс. Драйверы, как правило, разрабатываются поставщиками комплектующих компьютера отдельно для каждого вида операционной системы. Также, системный блок не может обойтись без системы охлаждения и панели управления, позволяющей включать и выключать компьютер.

Уровень 3. Как работает компьютер

Как в компьютере представлены данные . Все данные для компьютера – это набор чисел. Как хранятся положительные целые числа , я рассказал в самом начале. Данные, которые могут быть как положительными, так и отрицательными, в первом разряде (в 1-м бите) хранят знак (0-плюс, 1-минус). Про особенности хранения вещественных чисел рассказывать подробно не буду, но следует знать, что вещественные числа в компьютере представляются с помощью мантиссы и экспоненты . Мантисса - это правильная дробь (числитель меньше знаменателя), у которой первый знак после запятой больше нуля (в двоичной системе это означает, что после запятой первый разряд - 1). Значение вещественных чисел вычисляется по формуле D=m*2 q , где m – мантисса, а q -экспонента, равная log 2 (D/m). В памяти компьютер хранит не саму мантиссу, а ее значащую часть - знаки после запятой. Чем больше разрядов (битов) выделено под мантиссу, тем выше точность представления вещественных данных. Пример:

Число ПИ в десятичной системе счисления выглядит примерно так: ПИ=3,1415926535... Приведем число к виду правильной дроби, умноженной на 10 в соответствующей степени: ПИ=3,1415926535 = 0.31415926535*10 1 =m*10 q , где m=0.31415926535, q=1.

Таким образом, мы представили вещественное число в виде двух целых чисел, поскольку для хранения мантиссы достаточно хранить только знаки после запятой (31415926535). Нужно учитывать, что и мантисса и экспонента могут быть как положительными, так и отрицательными числами. Если число отрицательное, то и мантисса отрицательная. Если число меньше одной десятой, то экспонента отрицательная (в десятичной системе счисления). В двоичной системе счисления экспонента отрицательная, если число меньше 0.5. Теперь попробуем проделать то же самое в двоичной системе счисления.

Немного округлим исходное число: ПИ 10 =3.1415=3+0.1415 Итак, 3 в двоичной системе это 11. Теперь разберемся с дробной частью. 0.1415=0 *0.5+0 *0.25+1 *0.125+…= 0 *2 -1 +0 *2 -2 +1 *2 -3 +… В итоге получим примерно следующее: ПИ 2 =11,001001000011=0.11001001000011*2 2 =m*2 q , где m=0.11001001000011, а q=2.

Теперь должно стать понятным, что я имел в виду под точностью представления вещественных чисел. На мантиссу потрачено 14 разрядов, а для числа ПИ удалось сохранить только лишь несколько знаков после запятой (в десятичной системе счисления). Также, работая на компьютере, можно столкнуться со следующей формой записи числа:

6,6725E-11 Это не что иное, как 6,6725*10 -11 Текст – это последовательность символов, а каждый символ имеет свой числовой код. Кодировок текста существует несколько. Наиболее известные и широко применяемые кодировки текста – это ASCII и UNICODE. Графика – это последовательность точек, каждая из которых соответствует определенному цвету. Каждый цвет представлен 3-мя целыми числами: составляющей красного (red), зеленого (green) и синего (blue) цветов RGB палитры. Чем больше разрядов отводится под хранение цвета, тем большим спектром цветов вы можете оперировать. Видео – это просто последовательность статических кадров. Существуют технологии сжатия видео, которые, к примеру, отдельные участки видео хранят как один кадр и последовательность дельт – отличий последующих кадров от предыдущего. При условии, что соседние кадры отличаются не абсолютно всеми точками (например, мультипликация), такой подход позволяет сэкономить на общих объемах материала. Звук – это сигнал, который из аналогового представления можно перевести в цифровое путем дискретизации и квантования (оцифровки). Естественно, что оцифровка приведет к потере качества, но такова цена цифрового звучания.

Как организован процесс вычислений . Материнская плата – это печатная плата, на которой установлен центральный процессор (ЦП ). Также, через специальные разъемы к материнской плате подключены модули оперативной памяти, видеокарта, звуковая карта и прочие устройства. Материнская плата – это агрегирующее звено в архитектуре современного компьютера. Материнская плата снабжена системным контроллером (северный мост ), обеспечивающим связь центрального процессора с оперативной памятью и графическим контроллером, а также, периферийным контроллером (южный мост ), отвечающим за связь с контроллерами периферийных устройств и постоянным запоминающим устройством. Северный и Южный мост вместе образуют чипсет материнской платы - ее базовый набор микросхем. Оперативная память или оперативное запоминающее устройство (ОЗУ ) – это энергозависимая память компьютера, в которой хранятся исполняемый и сами данные программы. Объем оперативной памяти влияет на производительность компьютера, поскольку именно ОЗУ определяет объем обрабатываемой в каждый момент времени информации. Постоянное запоминающее устройство (ПЗУ ) – это энергоне зависимая память компьютера, которая хранит самую важную для него информацию, в том числе программу первоначальной загрузки компьютера (до загрузки операционной системы) – BIOS (basic input/output system - базовая система ввода-вывода). Данные ПЗУ обычно записывает производитель материнской платы. Видеокарта – это самостоятельная плата со своим процессором и своей оперативной памятью (видеопамять), предназначенная для быстрого преобразования графической информации в тот вид, который можно напрямую вывести на экран. Процессор видеокарты оптимизирован для работы с графикой, в том числе, для обработки трехмерной графики. Тем самым, процессор видеокарты разгружает центральный процессор от такого вида работ. Чем выше объем видеопамяти, тем быстрее и чаще компьютер способен обновлять данные на экране, и тем шире может быть спектр используемых цветов. Центральное процессорное устройство (ЦПУ) может состоять из нескольких процессоров, каждый из которых способен параллельно остальным выполнять свою программу. Раньше процессор и ядро процессора были синонимами. Сейчас ЦПУ может состоять из нескольких процессоров, а каждый процессор из нескольких ядер. Ядро микропроцессора – это арифметико-логическое устройство (АЛУ ), контроллер ядра и набор системных регистров . АЛУ, как следует из его названия, умеет выполнять с числами, загруженными в регистры . Набор регистров служит для хранения адреса текущей команды (команды хранятся в оперативной памяти, а регистр IP (Instruction Pointer) указывает на текущую команду), адресов загружаемых для выполнения команды данных и самих данных, включая результат выполнения команды. Ядро, собственно, и управляет всем этим процессом, выполняя низкоуровневые команды процессора. К таким командам относятся загрузка данных в регистры, выполнение арифметических операций, сравнение значений двух регистров, переход к следующей команде и т.д. Сам микропроцессор обменивается данными с оперативной памятью посредством контроллера оперативной памяти. Хотя время доступа к оперативной памяти намного меньше, чем, к примеру, время доступа к информации на жестком диске, но при интенсивных вычислениях всех же это время становится заметным. Для организации хранения данных, время доступа к которым должно быть минимальным, служит сверхоперативная память (кэш память).


Кто или что управляет процессом вычислений . Процессом вычислений, как я уже сказал в начале, управляет компьютерная программа. Программы пишутся на различных языках программирования и чаще всего на . Основными высокого уровня являются: объявление переменных различных типов, выполнение арифметических и логических операций, условные операторы и циклы. Человеку, программирующему на языке высокого уровня не нужно задумываться, как обрабатываемая им информация представляется в компьютере. Все вычисления, в основном, описываются в привычной для него десятичной системе счисления. Программист определяет в том виде, в котором ему удобно. В его распоряжении серьезный арсенал уже готовых программных компонентов, решений и технологий программирования: , средства организации , сервисы работы с и т.д. и т.п. Далее, специальные программы, называемые компиляторами, переводят текст программы в машинный код – на язык команд, понятный центральному процессору компьютера. Как выглядит программа на языке программирования высокого уровня можно, к примеру, посмотреть на страницах этого сайта, а как выглядит программа на языке низкого уровня, приближенного к машинному коду (), смотрите ниже (эта программа всего лишь выводит сообщение “Hello, world”).

386 .model flat, stdcall option casemap:none include \masm32\include\windows.inc include \masm32\include\kernel32.inc includelib \masm32\lib\kernel32.lib .data msg db "Hello, world", 13, 10 len equ $-msg .data? written dd ? .code start: push -11 call GetStdHandle push 0 push OFFSET written push len push OFFSET msg push eax call WriteFile push 0 call ExitProcess end start

Один оператор на языке высокого уровня трансформируется в десятки, а то и сотни строк машинного кода, но поскольку это происходит автоматически, то переживать по этому поводу не стоит. В момент запуска программы, операционная система выделяет ей отдельный , загружает машинный код в оперативную память, инициализирует регистры (в регистр IP помещает адрес самой первой инструкции), и вычислительный процесс начинается.

Считаю, что в рамках этого материала рассказ о том, как устроен современный компьютер, можно закончить. Теперь вы знаете в общих чертах, из чего он состоит и как работает, а детали без труда найдете в интернете.

Публикации по теме